import asyncio import math from typing import Tuple from src.chat.memory_system.Hippocampus import hippocampus_manager from src.chat.message_receive.message import MessageRecv, MessageRecvS4U from maim_message.message_base import GroupInfo from src.chat.message_receive.storage import MessageStorage from src.chat.message_receive.chat_stream import get_chat_manager from src.chat.utils.timer_calculator import Timer from src.chat.utils.utils import is_mentioned_bot_in_message from src.common.logger import get_logger from src.config.config import global_config from src.mais4u.mais4u_chat.body_emotion_action_manager import action_manager from src.mais4u.mais4u_chat.s4u_mood_manager import mood_manager from src.mais4u.mais4u_chat.s4u_watching_manager import watching_manager from src.mais4u.mais4u_chat.context_web_manager import get_context_web_manager from src.mais4u.mais4u_chat.gift_manager import gift_manager from src.mais4u.mais4u_chat.screen_manager import screen_manager from .s4u_chat import get_s4u_chat_manager # from ..message_receive.message_buffer import message_buffer logger = get_logger("chat") async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]: """计算消息的兴趣度 Args: message: 待处理的消息对象 Returns: Tuple[float, bool]: (兴趣度, 是否被提及) """ is_mentioned, _ = is_mentioned_bot_in_message(message) interested_rate = 0.0 if global_config.memory.enable_memory: with Timer("记忆激活"): interested_rate,_ ,_= await hippocampus_manager.get_activate_from_text( message.processed_plain_text, fast_retrieval=True, ) logger.debug(f"记忆激活率: {interested_rate:.2f}") text_len = len(message.processed_plain_text) # 根据文本长度分布调整兴趣度,采用分段函数实现更精确的兴趣度计算 # 基于实际分布:0-5字符(26.57%), 6-10字符(27.18%), 11-20字符(22.76%), 21-30字符(10.33%), 31+字符(13.86%) if text_len == 0: base_interest = 0.01 # 空消息最低兴趣度 elif text_len <= 5: # 1-5字符:线性增长 0.01 -> 0.03 base_interest = 0.01 + (text_len - 1) * (0.03 - 0.01) / 4 elif text_len <= 10: # 6-10字符:线性增长 0.03 -> 0.06 base_interest = 0.03 + (text_len - 5) * (0.06 - 0.03) / 5 elif text_len <= 20: # 11-20字符:线性增长 0.06 -> 0.12 base_interest = 0.06 + (text_len - 10) * (0.12 - 0.06) / 10 elif text_len <= 30: # 21-30字符:线性增长 0.12 -> 0.18 base_interest = 0.12 + (text_len - 20) * (0.18 - 0.12) / 10 elif text_len <= 50: # 31-50字符:线性增长 0.18 -> 0.22 base_interest = 0.18 + (text_len - 30) * (0.22 - 0.18) / 20 elif text_len <= 100: # 51-100字符:线性增长 0.22 -> 0.26 base_interest = 0.22 + (text_len - 50) * (0.26 - 0.22) / 50 else: # 100+字符:对数增长 0.26 -> 0.3,增长率递减 base_interest = 0.26 + (0.3 - 0.26) * (math.log10(text_len - 99) / math.log10(901)) # 1000-99=901 # 确保在范围内 base_interest = min(max(base_interest, 0.01), 0.3) interested_rate += base_interest if is_mentioned: interest_increase_on_mention = 1 interested_rate += interest_increase_on_mention return interested_rate, is_mentioned class S4UMessageProcessor: """心流处理器,负责处理接收到的消息并计算兴趣度""" def __init__(self): """初始化心流处理器,创建消息存储实例""" self.storage = MessageStorage() async def process_message(self, message: MessageRecvS4U, skip_gift_debounce: bool = False) -> None: """处理接收到的原始消息数据 主要流程: 1. 消息解析与初始化 2. 消息缓冲处理 3. 过滤检查 4. 兴趣度计算 5. 关系处理 Args: message_data: 原始消息字符串 """ # 1. 消息解析与初始化 groupinfo = message.message_info.group_info userinfo = message.message_info.user_info message_info = message.message_info chat = await get_chat_manager().get_or_create_stream( platform=message_info.platform, user_info=userinfo, group_info=groupinfo, ) if await self.handle_internal_message(message): return if await self.hadle_if_voice_done(message): return # 处理礼物消息,如果消息被暂存则停止当前处理流程 if not skip_gift_debounce and not await self.handle_if_gift(message): return await self.check_if_fake_gift(message) # 处理屏幕消息 if await self.handle_screen_message(message): return await self.storage.store_message(message, chat) s4u_chat = get_s4u_chat_manager().get_or_create_chat(chat) await s4u_chat.add_message(message) _interested_rate, _ = await _calculate_interest(message) await mood_manager.start() # 一系列llm驱动的前处理 chat_mood = mood_manager.get_mood_by_chat_id(chat.stream_id) asyncio.create_task(chat_mood.update_mood_by_message(message)) chat_action = action_manager.get_action_state_by_chat_id(chat.stream_id) asyncio.create_task(chat_action.update_action_by_message(message)) # 视线管理:收到消息时切换视线状态 chat_watching = watching_manager.get_watching_by_chat_id(chat.stream_id) await chat_watching.on_message_received() # 上下文网页管理:启动独立task处理消息上下文 asyncio.create_task(self._handle_context_web_update(chat.stream_id, message)) # 日志记录 if message.is_gift: logger.info(f"[S4U-礼物] {userinfo.user_nickname} 送出了 {message.gift_name} x{message.gift_count}") else: logger.info(f"[S4U]{userinfo.user_nickname}:{message.processed_plain_text}") async def handle_internal_message(self, message: MessageRecvS4U): if message.is_internal: group_info = GroupInfo(platform = "amaidesu_default",group_id = 660154,group_name = "内心") chat = await get_chat_manager().get_or_create_stream( platform = "amaidesu_default", user_info = message.message_info.user_info, group_info = group_info ) s4u_chat = get_s4u_chat_manager().get_or_create_chat(chat) message.message_info.group_info = s4u_chat.chat_stream.group_info message.message_info.platform = s4u_chat.chat_stream.platform s4u_chat.internal_message.append(message) s4u_chat._new_message_event.set() logger.info(f"[{s4u_chat.stream_name}] 添加内部消息-------------------------------------------------------: {message.processed_plain_text}") return True return False async def handle_screen_message(self, message: MessageRecvS4U): if message.is_screen: screen_manager.set_screen(message.screen_info) return True return False async def hadle_if_voice_done(self, message: MessageRecvS4U): if message.voice_done: s4u_chat = get_s4u_chat_manager().get_or_create_chat(message.chat_stream) s4u_chat.voice_done = message.voice_done return True return False async def check_if_fake_gift(self, message: MessageRecvS4U) -> bool: """检查消息是否为假礼物""" if message.is_gift: return False gift_keywords = ["送出了礼物", "礼物", "送出了","投喂"] if any(keyword in message.processed_plain_text for keyword in gift_keywords): message.is_fake_gift = True return True return False async def handle_if_gift(self, message: MessageRecvS4U) -> bool: """处理礼物消息 Returns: bool: True表示应该继续处理消息,False表示消息已被暂存不需要继续处理 """ if message.is_gift: # 定义防抖完成后的回调函数 def gift_callback(merged_message: MessageRecvS4U): """礼物防抖完成后的回调""" # 创建异步任务来处理合并后的礼物消息,跳过防抖处理 asyncio.create_task(self.process_message(merged_message, skip_gift_debounce=True)) # 交给礼物管理器处理,并传入回调函数 # 对于礼物消息,handle_gift 总是返回 False(消息被暂存) await gift_manager.handle_gift(message, gift_callback) return False # 消息被暂存,不继续处理 return True # 非礼物消息,继续正常处理 async def _handle_context_web_update(self, chat_id: str, message: MessageRecv): """处理上下文网页更新的独立task Args: chat_id: 聊天ID message: 消息对象 """ try: logger.debug(f"🔄 开始处理上下文网页更新: {message.message_info.user_info.user_nickname}") context_manager = get_context_web_manager() # 只在服务器未启动时启动(避免重复启动) if context_manager.site is None: logger.info("🚀 首次启动上下文网页服务器...") await context_manager.start_server() # 添加消息到上下文并更新网页 await asyncio.sleep(1.5) await context_manager.add_message(chat_id, message) logger.debug(f"✅ 上下文网页更新完成: {message.message_info.user_info.user_nickname}") except Exception as e: logger.error(f"❌ 处理上下文网页更新失败: {e}", exc_info=True)