# -*- coding: utf-8 -*- import os import jieba import networkx as nx import matplotlib.pyplot as plt from collections import Counter import datetime import random import time from ..chat.config import global_config from ...common.database import Database # 使用正确的导入语法 from ..chat.utils import calculate_information_content, get_cloest_chat_from_db from ..models.utils_model import LLM_request class Memory_graph: def __init__(self): self.G = nx.Graph() # 使用 networkx 的图结构 self.db = Database.get_instance() def connect_dot(self, concept1, concept2): # 如果边已存在,增加 strength if self.G.has_edge(concept1, concept2): self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1 else: # 如果是新边,初始化 strength 为 1 self.G.add_edge(concept1, concept2, strength=1) def add_dot(self, concept, memory): if concept in self.G: # 如果节点已存在,将新记忆添加到现有列表中 if 'memory_items' in self.G.nodes[concept]: if not isinstance(self.G.nodes[concept]['memory_items'], list): # 如果当前不是列表,将其转换为列表 self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']] self.G.nodes[concept]['memory_items'].append(memory) else: self.G.nodes[concept]['memory_items'] = [memory] else: # 如果是新节点,创建新的记忆列表 self.G.add_node(concept, memory_items=[memory]) def get_dot(self, concept): # 检查节点是否存在于图中 if concept in self.G: # 从图中获取节点数据 node_data = self.G.nodes[concept] return concept, node_data return None def get_related_item(self, topic, depth=1): if topic not in self.G: return [], [] first_layer_items = [] second_layer_items = [] # 获取相邻节点 neighbors = list(self.G.neighbors(topic)) # 获取当前节点的记忆项 node_data = self.get_dot(topic) if node_data: concept, data = node_data if 'memory_items' in data: memory_items = data['memory_items'] if isinstance(memory_items, list): first_layer_items.extend(memory_items) else: first_layer_items.append(memory_items) # 只在depth=2时获取第二层记忆 if depth >= 2: # 获取相邻节点的记忆项 for neighbor in neighbors: node_data = self.get_dot(neighbor) if node_data: concept, data = node_data if 'memory_items' in data: memory_items = data['memory_items'] if isinstance(memory_items, list): second_layer_items.extend(memory_items) else: second_layer_items.append(memory_items) return first_layer_items, second_layer_items @property def dots(self): # 返回所有节点对应的 Memory_dot 对象 return [self.get_dot(node) for node in self.G.nodes()] def forget_topic(self, topic): """随机删除指定话题中的一条记忆,如果话题没有记忆则移除该话题节点""" if topic not in self.G: return None # 获取话题节点数据 node_data = self.G.nodes[topic] # 如果节点存在memory_items if 'memory_items' in node_data: memory_items = node_data['memory_items'] # 确保memory_items是列表 if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] # 如果有记忆项可以删除 if memory_items: # 随机选择一个记忆项删除 removed_item = random.choice(memory_items) memory_items.remove(removed_item) # 更新节点的记忆项 if memory_items: self.G.nodes[topic]['memory_items'] = memory_items else: # 如果没有记忆项了,删除整个节点 self.G.remove_node(topic) return removed_item return None # 海马体 class Hippocampus: def __init__(self,memory_graph:Memory_graph): self.memory_graph = memory_graph self.llm_model = LLM_request(model = global_config.llm_normal,temperature=0.5) self.llm_model_small = LLM_request(model = global_config.llm_normal_minor,temperature=0.5) def calculate_node_hash(self, concept, memory_items): """计算节点的特征值""" if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] sorted_items = sorted(memory_items) content = f"{concept}:{'|'.join(sorted_items)}" return hash(content) def calculate_edge_hash(self, source, target): """计算边的特征值""" nodes = sorted([source, target]) return hash(f"{nodes[0]}:{nodes[1]}") def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}): current_timestamp = datetime.datetime.now().timestamp() chat_text = [] #短期:1h 中期:4h 长期:24h for _ in range(time_frequency.get('near')): # 循环10次 random_time = current_timestamp - random.randint(1, 3600) # 随机时间 chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) chat_text.append(chat_) for _ in range(time_frequency.get('mid')): # 循环10次 random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间 chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) chat_text.append(chat_) for _ in range(time_frequency.get('far')): # 循环10次 random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间 chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) chat_text.append(chat_) return chat_text async def memory_compress(self, input_text, rate=1): information_content = calculate_information_content(input_text) print(f"文本的信息量(熵): {information_content:.4f} bits") topic_num = max(1, min(5, int(information_content * rate / 4))) topic_prompt = find_topic(input_text, topic_num) topic_response = await self.llm_model.generate_response(topic_prompt) # 检查 topic_response 是否为元组 if isinstance(topic_response, tuple): topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串 else: topics = topic_response.split(",") compressed_memory = set() for topic in topics: topic_what_prompt = topic_what(input_text,topic) topic_what_response = await self.llm_model_small.generate_response(topic_what_prompt) compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储 return compressed_memory async def operation_build_memory(self,chat_size=12): #最近消息获取频率 time_frequency = {'near':1,'mid':2,'far':2} memory_sample = self.get_memory_sample(chat_size,time_frequency) # print(f"\033[1;32m[记忆构建]\033[0m 获取记忆样本: {memory_sample}") for i, input_text in enumerate(memory_sample, 1): #加载进度可视化 progress = (i / len(memory_sample)) * 100 bar_length = 30 filled_length = int(bar_length * i // len(memory_sample)) bar = '█' * filled_length + '-' * (bar_length - filled_length) print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})") if input_text: # 生成压缩后记忆 first_memory = set() first_memory = await self.memory_compress(input_text, 2.5) #将记忆加入到图谱中 for topic, memory in first_memory: topics = segment_text(topic) print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}") for split_topic in topics: self.memory_graph.add_dot(split_topic,memory) for split_topic in topics: for other_split_topic in topics: if split_topic != other_split_topic: self.memory_graph.connect_dot(split_topic, other_split_topic) else: print(f"空消息 跳过") self.sync_memory_to_db() def sync_memory_to_db(self): """检查并同步内存中的图结构与数据库""" # 获取数据库中所有节点和内存中所有节点 db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find()) memory_nodes = list(self.memory_graph.G.nodes(data=True)) # 转换数据库节点为字典格式,方便查找 db_nodes_dict = {node['concept']: node for node in db_nodes} # 检查并更新节点 for concept, data in memory_nodes: memory_items = data.get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] # 计算内存中节点的特征值 memory_hash = self.calculate_node_hash(concept, memory_items) if concept not in db_nodes_dict: # 数据库中缺少的节点,添加 node_data = { 'concept': concept, 'memory_items': memory_items, 'hash': memory_hash } self.memory_graph.db.db.graph_data.nodes.insert_one(node_data) else: # 获取数据库中节点的特征值 db_node = db_nodes_dict[concept] db_hash = db_node.get('hash', None) # 如果特征值不同,则更新节点 if db_hash != memory_hash: self.memory_graph.db.db.graph_data.nodes.update_one( {'concept': concept}, {'$set': { 'memory_items': memory_items, 'hash': memory_hash }} ) # 检查并删除数据库中多余的节点 memory_concepts = set(node[0] for node in memory_nodes) for db_node in db_nodes: if db_node['concept'] not in memory_concepts: self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']}) # 处理边的信息 db_edges = list(self.memory_graph.db.db.graph_data.edges.find()) memory_edges = list(self.memory_graph.G.edges()) # 创建边的哈希值字典 db_edge_dict = {} for edge in db_edges: edge_hash = self.calculate_edge_hash(edge['source'], edge['target']) db_edge_dict[(edge['source'], edge['target'])] = { 'hash': edge_hash, 'strength': edge.get('strength', 1) } # 检查并更新边 for source, target in memory_edges: edge_hash = self.calculate_edge_hash(source, target) edge_key = (source, target) strength = self.memory_graph.G[source][target].get('strength', 1) if edge_key not in db_edge_dict: # 添加新边 edge_data = { 'source': source, 'target': target, 'strength': strength, 'hash': edge_hash } self.memory_graph.db.db.graph_data.edges.insert_one(edge_data) else: # 检查边的特征值是否变化 if db_edge_dict[edge_key]['hash'] != edge_hash: self.memory_graph.db.db.graph_data.edges.update_one( {'source': source, 'target': target}, {'$set': { 'hash': edge_hash, 'strength': strength }} ) # 删除多余的边 memory_edge_set = set(memory_edges) for edge_key in db_edge_dict: if edge_key not in memory_edge_set: source, target = edge_key self.memory_graph.db.db.graph_data.edges.delete_one({ 'source': source, 'target': target }) def sync_memory_from_db(self): """从数据库同步数据到内存中的图结构""" # 清空当前图 self.memory_graph.G.clear() # 从数据库加载所有节点 nodes = self.memory_graph.db.db.graph_data.nodes.find() for node in nodes: concept = node['concept'] memory_items = node.get('memory_items', []) # 确保memory_items是列表 if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] # 添加节点到图中 self.memory_graph.G.add_node(concept, memory_items=memory_items) # 从数据库加载所有边 edges = self.memory_graph.db.db.graph_data.edges.find() for edge in edges: source = edge['source'] target = edge['target'] strength = edge.get('strength', 1) # 获取 strength,默认为 1 # 只有当源节点和目标节点都存在时才添加边 if source in self.memory_graph.G and target in self.memory_graph.G: self.memory_graph.G.add_edge(source, target, strength=strength) async def operation_forget_topic(self, percentage=0.1): """随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘""" # 获取所有节点 all_nodes = list(self.memory_graph.G.nodes()) # 计算要检查的节点数量 check_count = max(1, int(len(all_nodes) * percentage)) # 随机选择节点 nodes_to_check = random.sample(all_nodes, check_count) forgotten_nodes = [] for node in nodes_to_check: # 获取节点的连接数 connections = self.memory_graph.G.degree(node) # 获取节点的内容条数 memory_items = self.memory_graph.G.nodes[node].get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] content_count = len(memory_items) # 检查连接强度 weak_connections = True if connections > 1: # 只有当连接数大于1时才检查强度 for neighbor in self.memory_graph.G.neighbors(node): strength = self.memory_graph.G[node][neighbor].get('strength', 1) if strength > 2: weak_connections = False break # 如果满足遗忘条件 if (connections <= 1 and weak_connections) or content_count <= 2: removed_item = self.memory_graph.forget_topic(node) if removed_item: forgotten_nodes.append((node, removed_item)) print(f"遗忘节点 {node} 的记忆: {removed_item}") # 同步到数据库 if forgotten_nodes: self.sync_memory_to_db() print(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆") else: print("本次检查没有节点满足遗忘条件") async def merge_memory(self, topic): """ 对指定话题的记忆进行合并压缩 Args: topic: 要合并的话题节点 """ # 获取节点的记忆项 memory_items = self.memory_graph.G.nodes[topic].get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] # 如果记忆项不足,直接返回 if len(memory_items) < 10: return # 随机选择10条记忆 selected_memories = random.sample(memory_items, 10) # 拼接成文本 merged_text = "\n".join(selected_memories) print(f"\n[合并记忆] 话题: {topic}") print(f"选择的记忆:\n{merged_text}") # 使用memory_compress生成新的压缩记忆 compressed_memories = await self.memory_compress(merged_text, 0.1) # 从原记忆列表中移除被选中的记忆 for memory in selected_memories: memory_items.remove(memory) # 添加新的压缩记忆 for _, compressed_memory in compressed_memories: memory_items.append(compressed_memory) print(f"添加压缩记忆: {compressed_memory}") # 更新节点的记忆项 self.memory_graph.G.nodes[topic]['memory_items'] = memory_items print(f"完成记忆合并,当前记忆数量: {len(memory_items)}") async def operation_merge_memory(self, percentage=0.1): """ 随机检查一定比例的节点,对内容数量超过100的节点进行记忆合并 Args: percentage: 要检查的节点比例,默认为0.1(10%) """ # 获取所有节点 all_nodes = list(self.memory_graph.G.nodes()) # 计算要检查的节点数量 check_count = max(1, int(len(all_nodes) * percentage)) # 随机选择节点 nodes_to_check = random.sample(all_nodes, check_count) merged_nodes = [] for node in nodes_to_check: # 获取节点的内容条数 memory_items = self.memory_graph.G.nodes[node].get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] content_count = len(memory_items) # 如果内容数量超过100,进行合并 if content_count > 100: print(f"\n检查节点: {node}, 当前记忆数量: {content_count}") await self.merge_memory(node) merged_nodes.append(node) # 同步到数据库 if merged_nodes: self.sync_memory_to_db() print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点") else: print("\n本次检查没有需要合并的节点") def segment_text(text): seg_text = list(jieba.cut(text)) return seg_text def find_topic(text, topic_num): prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。' return prompt def topic_what(text, topic): prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好' return prompt from nonebot import get_driver driver = get_driver() config = driver.config start_time = time.time() Database.initialize( host= config.MONGODB_HOST, port= config.MONGODB_PORT, db_name= config.DATABASE_NAME, username= config.MONGODB_USERNAME, password= config.MONGODB_PASSWORD, auth_source=config.MONGODB_AUTH_SOURCE ) #创建记忆图 memory_graph = Memory_graph() #创建海马体 hippocampus = Hippocampus(memory_graph) #从数据库加载记忆图 hippocampus.sync_memory_from_db() end_time = time.time() print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")