import time import random from typing import List, Dict, Optional, Any, Tuple from src.common.logger_manager import get_logger from src.llm_models.utils_model import LLMRequest from src.config.config import global_config from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_random, build_anonymous_messages from src.chat.utils.prompt_builder import Prompt, global_prompt_manager import os import json MAX_EXPRESSION_COUNT = 100 logger = get_logger("expressor") def init_prompt() -> None: learn_style_prompt = """ {chat_str} 请从上面这段群聊中概括除了人名为"SELF"之外的人的语言风格,只考虑文字,不要考虑表情包和图片 不要涉及具体的人名,只考虑语言风格 语言风格包含特殊内容和情感 思考有没有特殊的梗,一并总结成语言风格 总结成如下格式的规律,总结的内容要详细,但具有概括性: 当"xxx"时,可以"xxx", xxx不超过10个字 例如: 当"表示十分惊叹"时,使用"我嘞个xxxx" 当"表示讽刺的赞同,不想讲道理"时,使用"对对对" 当"想说明某个观点,但懒得明说",使用"懂的都懂" 注意不要总结你自己的发言 现在请你概括 """ Prompt(learn_style_prompt, "learn_style_prompt") learn_grammar_prompt = """ {chat_str} 请从上面这段群聊中概括除了人名为"SELF"之外的人的语法和句法特点,只考虑纯文字,不要考虑表情包和图片 不要总结【图片】,【动画表情】,[图片],[动画表情],不总结 表情符号 at @ 回复 和[回复] 不要涉及具体的人名,只考虑语法和句法特点, 语法和句法特点要包括,句子长短(具体字数),有何种语病,如何拆分句子。 总结成如下格式的规律,总结的内容要简洁,不浮夸: 当"xxx"时,可以"xxx" 例如: 当"表达观点较复杂"时,使用"省略主语(3-6个字)"的句法 当"不用详细说明的一般表达"时,使用"非常简洁的句子"的句法 当"需要单纯简单的确认"时,使用"单字或几个字的肯定(1-2个字)"的句法 注意不要总结你自己的发言 现在请你概括 """ Prompt(learn_grammar_prompt, "learn_grammar_prompt") class ExpressionLearner: def __init__(self) -> None: # TODO: API-Adapter修改标记 self.express_learn_model: LLMRequest = LLMRequest( model=global_config.model.focus_expressor, temperature=0.1, max_tokens=256, request_type="learn_expression", ) async def get_expression_by_chat_id(self, chat_id: str) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]: """ 读取/data/expression/learnt/{chat_id}/expressions.json和/data/expression/personality/expressions.json 返回(learnt_expressions, personality_expressions) """ learnt_style_file = os.path.join("data", "expression", "learnt_style", str(chat_id), "expressions.json") learnt_grammar_file = os.path.join("data", "expression", "learnt_grammar", str(chat_id), "expressions.json") personality_file = os.path.join("data", "expression", "personality", "expressions.json") learnt_style_expressions = [] learnt_grammar_expressions = [] personality_expressions = [] if os.path.exists(learnt_style_file): with open(learnt_style_file, "r", encoding="utf-8") as f: learnt_style_expressions = json.load(f) if os.path.exists(learnt_grammar_file): with open(learnt_grammar_file, "r", encoding="utf-8") as f: learnt_grammar_expressions = json.load(f) if os.path.exists(personality_file): with open(personality_file, "r", encoding="utf-8") as f: personality_expressions = json.load(f) return learnt_style_expressions, learnt_grammar_expressions, personality_expressions def is_similar(self, s1: str, s2: str) -> bool: """ 判断两个字符串是否相似(只考虑长度大于5且有80%以上重合,不考虑子串) """ if not s1 or not s2: return False min_len = min(len(s1), len(s2)) if min_len < 5: return False same = sum(1 for a, b in zip(s1, s2) if a == b) return same / min_len > 0.8 async def learn_and_store_expression(self) -> List[Tuple[str, str, str]]: """ 学习并存储表达方式,分别学习语言风格和句法特点 """ learnt_style: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="style", num=15) if not learnt_style: return [] learnt_grammar: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="grammar", num=15) if not learnt_grammar: return [] return learnt_style, learnt_grammar async def learn_and_store(self, type: str, num: int = 10) -> List[Tuple[str, str, str]]: """ 选择从当前到最近1小时内的随机num条消息,然后学习这些消息的表达方式 type: "style" or "grammar" """ if type == "style": type_str = "语言风格" elif type == "grammar": type_str = "句法特点" else: raise ValueError(f"Invalid type: {type}") logger.info(f"开始学习{type_str}...") learnt_expressions: Optional[List[Tuple[str, str, str]]] = await self.learn_expression(type, num) logger.info(f"学习到{len(learnt_expressions) if learnt_expressions else 0}条{type_str}") # learnt_expressions: List[(chat_id, situation, style)] if not learnt_expressions: logger.info(f"没有学习到{type_str}") return [] # 按chat_id分组 chat_dict: Dict[str, List[Dict[str, str]]] = {} for chat_id, situation, style in learnt_expressions: if chat_id not in chat_dict: chat_dict[chat_id] = [] chat_dict[chat_id].append({"situation": situation, "style": style}) # 存储到/data/expression/对应chat_id/expressions.json for chat_id, expr_list in chat_dict.items(): dir_path = os.path.join("data", "expression", f"learnt_{type}", str(chat_id)) os.makedirs(dir_path, exist_ok=True) file_path = os.path.join(dir_path, "expressions.json") # 若已存在,先读出合并 if os.path.exists(file_path): old_data: List[Dict[str, str, str]] = [] try: with open(file_path, "r", encoding="utf-8") as f: old_data = json.load(f) except Exception: old_data = [] else: old_data = [] # 超过最大数量时,20%概率移除count=1的项 if len(old_data) >= MAX_EXPRESSION_COUNT: new_old_data = [] for item in old_data: if item.get("count", 1) == 1 and random.random() < 0.2: continue # 20%概率移除 new_old_data.append(item) old_data = new_old_data # 合并逻辑 for new_expr in expr_list: found = False for old_expr in old_data: if self.is_similar(new_expr["situation"], old_expr.get("situation", "")) and self.is_similar( new_expr["style"], old_expr.get("style", "") ): found = True # 50%概率替换 if random.random() < 0.5: old_expr["situation"] = new_expr["situation"] old_expr["style"] = new_expr["style"] old_expr["count"] = old_expr.get("count", 1) + 1 break if not found: new_expr["count"] = 1 old_data.append(new_expr) with open(file_path, "w", encoding="utf-8") as f: json.dump(old_data, f, ensure_ascii=False, indent=2) return learnt_expressions async def learn_expression(self, type: str, num: int = 10) -> Optional[List[Tuple[str, str, str]]]: """选择从当前到最近1小时内的随机num条消息,然后学习这些消息的表达方式 Args: type: "style" or "grammar" """ if type == "style": type_str = "语言风格" prompt = "learn_style_prompt" elif type == "grammar": type_str = "句法特点" prompt = "learn_grammar_prompt" else: raise ValueError(f"Invalid type: {type}") current_time = time.time() random_msg: Optional[List[Dict[str, Any]]] = get_raw_msg_by_timestamp_random( current_time - 3600 * 24, current_time, limit=num ) # print(random_msg) if not random_msg or random_msg == []: return None # 转化成str chat_id: str = random_msg[0]["chat_id"] # random_msg_str: str = await build_readable_messages(random_msg, timestamp_mode="normal") random_msg_str: str = await build_anonymous_messages(random_msg) prompt: str = await global_prompt_manager.format_prompt( prompt, chat_str=random_msg_str, ) logger.debug(f"学习{type_str}的prompt: {prompt}") try: response, _ = await self.express_learn_model.generate_response_async(prompt) except Exception as e: logger.error(f"学习{type_str}失败: {e}") return None logger.debug(f"学习{type_str}的response: {response}") expressions: List[Tuple[str, str, str]] = self.parse_expression_response(response, chat_id) return expressions def parse_expression_response(self, response: str, chat_id: str) -> List[Tuple[str, str, str]]: """ 解析LLM返回的表达风格总结,每一行提取"当"和"使用"之间的内容,存储为(situation, style)元组 """ expressions: List[Tuple[str, str, str]] = [] for line in response.splitlines(): line = line.strip() if not line: continue # 查找"当"和下一个引号 idx_when = line.find('当"') if idx_when == -1: continue idx_quote1 = idx_when + 1 idx_quote2 = line.find('"', idx_quote1 + 1) if idx_quote2 == -1: continue situation = line[idx_quote1 + 1 : idx_quote2] # 查找"使用" idx_use = line.find('使用"', idx_quote2) if idx_use == -1: continue idx_quote3 = idx_use + 2 idx_quote4 = line.find('"', idx_quote3 + 1) if idx_quote4 == -1: continue style = line[idx_quote3 + 1 : idx_quote4] expressions.append((chat_id, situation, style)) return expressions init_prompt() expression_learner = ExpressionLearner()