import time import traceback import asyncio from ...memory_system.Hippocampus import HippocampusManager from ....config.config import global_config from ...chat.message import MessageRecv from ...storage.storage import MessageStorage from ...chat.utils import is_mentioned_bot_in_message from ...message import UserInfo, Seg from src.heart_flow.heartflow import heartflow from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig from ...chat.chat_stream import chat_manager from ...chat.message_buffer import message_buffer from ...utils.timer_calculater import Timer from .interest import InterestManager from .heartFC_chat import HeartFC_Chat # 导入 HeartFC_Chat 以调用回复生成 # 定义日志配置 processor_config = LogConfig( console_format=CHAT_STYLE_CONFIG["console_format"], file_format=CHAT_STYLE_CONFIG["file_format"], ) logger = get_module_logger("heartFC_processor", config=processor_config) # # 定义兴趣度增加触发回复的阈值 (移至 InterestManager) # INTEREST_INCREASE_THRESHOLD = 0.5 class HeartFC_Processor: def __init__(self, chat_instance: HeartFC_Chat): self.storage = MessageStorage() self.interest_manager = InterestManager() # TODO: 可能需要传递 chat_instance 给 InterestManager 或修改其方法签名 self.chat_instance = chat_instance # 持有 HeartFC_Chat 实例 async def process_message(self, message_data: str) -> None: """处理接收到的消息,更新状态,并将回复决策委托给 InterestManager""" timing_results = {} # 初始化 timing_results message = None try: message = MessageRecv(message_data) groupinfo = message.message_info.group_info userinfo = message.message_info.user_info messageinfo = message.message_info # 消息加入缓冲池 await message_buffer.start_caching_messages(message) # 创建聊天流 chat = await chat_manager.get_or_create_stream( platform=messageinfo.platform, user_info=userinfo, group_info=groupinfo, ) if not chat: logger.error(f"无法为消息创建或获取聊天流: user {userinfo.user_id}, group {groupinfo.group_id if groupinfo else 'None'}") return message.update_chat_stream(chat) # 创建心流与chat的观察 (在接收消息时创建,以便后续观察和思考) heartflow.create_subheartflow(chat.stream_id) await message.process() logger.trace(f"消息处理成功: {message.processed_plain_text}") # 过滤词/正则表达式过滤 if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex( message.raw_message, chat, userinfo ): return logger.trace(f"过滤词/正则表达式过滤成功: {message.processed_plain_text}") # 查询缓冲器结果 buffer_result = await message_buffer.query_buffer_result(message) # 处理缓冲器结果 (Bombing logic) if not buffer_result: F_type = "seglist" if message.message_segment.type != "seglist": F_type = message.message_segment.type else: if (isinstance(message.message_segment.data, list) and all(isinstance(x, Seg) for x in message.message_segment.data) and len(message.message_segment.data) == 1): F_type = message.message_segment.data[0].type if F_type == "text": logger.debug(f"触发缓冲,消息:{message.processed_plain_text}") elif F_type == "image": logger.debug("触发缓冲,表情包/图片等待中") elif F_type == "seglist": logger.debug("触发缓冲,消息列表等待中") return # 被缓冲器拦截,不生成回复 # ---- 只有通过缓冲的消息才进行存储和后续处理 ---- # 存储消息 (使用可能被缓冲器更新过的 message) try: await self.storage.store_message(message, chat) logger.trace(f"存储成功 (通过缓冲后): {message.processed_plain_text}") except Exception as e: logger.error(f"存储消息失败: {e}") logger.error(traceback.format_exc()) # 存储失败可能仍需考虑是否继续,暂时返回 return # 激活度计算 (使用可能被缓冲器更新过的 message.processed_plain_text) is_mentioned, _ = is_mentioned_bot_in_message(message) interested_rate = 0.0 # 默认值 try: with Timer("记忆激活", timing_results): interested_rate = await HippocampusManager.get_instance().get_activate_from_text( message.processed_plain_text, fast_retrieval=True # 使用更新后的文本 ) logger.trace(f"记忆激活率 (通过缓冲后): {interested_rate:.2f}") except Exception as e: logger.error(f"计算记忆激活率失败: {e}") logger.error(traceback.format_exc()) if is_mentioned: interested_rate += 0.8 # 更新兴趣度 try: self.interest_manager.increase_interest(chat.stream_id, value=interested_rate, message=message) current_interest = self.interest_manager.get_interest(chat.stream_id) # 获取更新后的值用于日志 logger.trace(f"使用激活率 {interested_rate:.2f} 更新后 (通过缓冲后),当前兴趣度: {current_interest:.2f}") except Exception as e: logger.error(f"更新兴趣度失败: {e}") # 调整日志消息 logger.error(traceback.format_exc()) # ---- 兴趣度计算和更新结束 ---- # 打印消息接收和处理信息 mes_name = chat.group_info.group_name if chat.group_info else "私聊" current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time)) logger.info( f"[{current_time}][{mes_name}]" f"{chat.user_info.user_nickname}:" f"{message.processed_plain_text}" f"兴趣度: {current_interest:.2f}" ) # 回复触发逻辑已移至 HeartFC_Chat 的监控任务 except Exception as e: logger.error(f"消息处理失败 (process_message V3): {e}") logger.error(traceback.format_exc()) if message: # 记录失败的消息内容 logger.error(f"失败消息原始内容: {message.raw_message}") def _check_ban_words(self, text: str, chat, userinfo) -> bool: """检查消息中是否包含过滤词""" for word in global_config.ban_words: if word in text: logger.info( f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}" ) logger.info(f"[过滤词识别]消息中含有{word},filtered") return True return False def _check_ban_regex(self, text: str, chat, userinfo) -> bool: """检查消息是否匹配过滤正则表达式""" for pattern in global_config.ban_msgs_regex: if pattern.search(text): logger.info( f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}" ) logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered") return True return False