import time import json import re import asyncio from typing import List, Dict, Any, Optional, Tuple, Set from src.common.logger import get_logger from src.config.config import global_config, model_config from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.plugin_system.apis import llm_api from src.common.database.database_model import ThinkingBack, Jargon from json_repair import repair_json from src.memory_system.retrieval_tools import get_tool_registry, init_all_tools from src.llm_models.payload_content.message import MessageBuilder, RoleType, Message from src.jargon.jargon_utils import parse_chat_id_list, chat_id_list_contains logger = get_logger("memory_retrieval") THINKING_BACK_NOT_FOUND_RETENTION_SECONDS = 36000 # 未找到答案记录保留时长 THINKING_BACK_CLEANUP_INTERVAL_SECONDS = 3000 # 清理频率 _last_not_found_cleanup_ts: float = 0.0 def _cleanup_stale_not_found_thinking_back() -> None: """定期清理过期的未找到答案记录""" global _last_not_found_cleanup_ts now = time.time() if now - _last_not_found_cleanup_ts < THINKING_BACK_CLEANUP_INTERVAL_SECONDS: return threshold_time = now - THINKING_BACK_NOT_FOUND_RETENTION_SECONDS try: deleted_rows = ( ThinkingBack.delete() .where((ThinkingBack.found_answer == 0) & (ThinkingBack.update_time < threshold_time)) .execute() ) if deleted_rows: logger.info(f"清理过期的未找到答案thinking_back记录 {deleted_rows} 条") _last_not_found_cleanup_ts = now except Exception as e: logger.error(f"清理未找到答案的thinking_back记录失败: {e}") def init_memory_retrieval_prompt(): """初始化记忆检索相关的 prompt 模板和工具""" # 首先注册所有工具 init_all_tools() # 第一步:问题生成prompt Prompt( """ 你的名字是{bot_name}。现在是{time_now}。 群里正在进行的聊天内容: {chat_history} {recent_query_history} 现在,{sender}发送了内容:{target_message},你想要回复ta。 请仔细分析聊天内容,考虑以下几点: 1. 对话中是否提到了过去发生的事情、人物、事件或信息 2. 是否有需要回忆的内容(比如"之前说过"、"上次"、"以前"等) 3. 是否有需要查找历史信息的问题 4. 是否有问题可以搜集信息帮助你聊天 重要提示: - **每次只能提出一个问题**,选择最需要查询的关键问题 - 如果"最近已查询的问题和结果"中已经包含了类似的问题并得到了答案,请避免重复生成相同或相似的问题,不需要重复查询 - 如果之前已经查询过某个问题但未找到答案,可以尝试用不同的方式提问或更具体的问题 如果你认为需要从记忆中检索信息来回答,请根据上下文提出**一个**最关键的问题来帮助你回复目标消息,放入"questions"字段 问题格式示例: - "xxx在前几天干了什么" - "xxx是什么,在什么时候提到过?" - "xxxx和xxx的关系是什么" - "xxx在某个时间点发生了什么" 问题要说明前因后果和上下文,使其全面且精准 输出格式示例(需要检索时): ```json {{ "questions": ["张三在前几天干了什么"] #问题数组(字符串数组),如果不需要检索记忆则输出空数组[],如果需要检索则只输出包含一个问题的数组 }} ``` 输出格式示例(不需要检索时): ```json {{ "questions": [] }} ``` 请只输出JSON对象,不要输出其他内容: """, name="memory_retrieval_question_prompt", ) # 第二步:ReAct Agent prompt(使用function calling,要求先思考再行动) Prompt( """你的名字是{bot_name}。现在是{time_now}。 你正在参与聊天,你需要搜集信息来回答问题,帮助你参与聊天。 **重要限制:** - 最大查询轮数:{max_iterations}轮(当前第{current_iteration}轮,剩余{remaining_iterations}轮) - 思考要简短,直接切入要点 - 必须严格使用检索到的信息回答问题,不要编造信息 当前需要解答的问题:{question} 已收集的信息: {collected_info} **执行步骤:** **第一步:思考(Think)** 在思考中分析: - 当前信息是否足够回答问题({question})? - **如果信息足够且能找到明确答案**,在思考中直接给出答案,格式为:found_answer(answer="你的答案内容") - **如果信息不足以解答问题,需要尝试搜集更多信息,进一步调用工具,进入第二步行动环节 - **如果已有信息不足或无法找到答案,决定结束查询**,在思考中给出:not_enough_info(reason="结束查询的原因") **第二步:行动(Action)** - 如果涉及过往事件,或者查询某个过去可能提到过的概念,或者某段时间发生的事件。可以使用聊天记录查询工具查询过往事件 - 如果涉及人物,可以使用人物信息查询工具查询人物信息 - 如果没有可靠信息,且查询时间充足,或者不确定查询类别,也可以使用lpmm知识库查询,作为辅助信息 - 如果信息不足需要使用tool,说明需要查询什么,并输出为纯文本说明,然后调用相应工具查询(可并行调用多个工具) **重要规则:** - **只有在检索到明确、有关的信息并得出答案时,才使用found_answer** - **如果信息不足、无法确定、找不到相关信息导致的无法回答问题,决定结束查询,必须使用not_enough_info,不要使用found_answer** - 答案必须在思考中给出,格式为 found_answer(answer="...") 或 not_enough_info(reason="...") """, name="memory_retrieval_react_prompt_head", ) # 额外,如果最后一轮迭代:ReAct Agent prompt(使用function calling,要求先思考再行动) Prompt( """你的名字是{bot_name}。现在是{time_now}。 你正在参与聊天,你需要根据搜集到的信息判断问题是否可以回答问题。 当前问题:{question} 已收集的信息: {collected_info} **执行步骤:** 分析: - 当前信息是否足够回答问题? - **如果信息足够且能找到明确答案**,在思考中直接给出答案,格式为:found_answer(answer="你的答案内容") - **如果信息不足或无法找到答案**,在思考中给出:not_enough_info(reason="信息不足或无法找到答案的原因") **重要规则:** - 你已经经过几轮查询,尝试了信息搜集,现在你需要总结信息,选择回答问题或判断问题无法回答 - 必须严格使用检索到的信息回答问题,不要编造信息 - 答案必须精简,不要过多解释 - **只有在检索到明确、具体的答案时,才使用found_answer** - **如果信息不足、无法确定、找不到相关信息,必须使用not_enough_info,不要使用found_answer** - 答案必须给出,格式为 found_answer(answer="...") 或 not_enough_info(reason="...")。 """, name="memory_retrieval_react_final_prompt", ) def _parse_react_response(response: str) -> Optional[Dict[str, Any]]: """解析ReAct Agent的响应 Args: response: LLM返回的响应 Returns: Dict[str, Any]: 解析后的动作信息,如果解析失败返回None 格式: {"thought": str, "actions": List[Dict[str, Any]]} 每个action格式: {"action_type": str, "action_params": dict} """ try: # 尝试提取JSON(可能包含在```json代码块中) json_pattern = r"```json\s*(.*?)\s*```" matches = re.findall(json_pattern, response, re.DOTALL) if matches: json_str = matches[0] else: # 尝试直接解析整个响应 json_str = response.strip() # 修复可能的JSON错误 repaired_json = repair_json(json_str) # 解析JSON action_info = json.loads(repaired_json) if not isinstance(action_info, dict): logger.warning(f"解析的JSON不是对象格式: {action_info}") return None # 确保actions字段存在且为列表 if "actions" not in action_info: logger.warning(f"响应中缺少actions字段: {action_info}") return None if not isinstance(action_info["actions"], list): logger.warning(f"actions字段不是数组格式: {action_info['actions']}") return None # 确保actions不为空 if len(action_info["actions"]) == 0: logger.warning("actions数组为空") return None return action_info except Exception as e: logger.error(f"解析ReAct响应失败: {e}, 响应内容: {response[:200]}...") return None async def _retrieve_concepts_with_jargon(concepts: List[str], chat_id: str) -> str: """对概念列表进行jargon检索 Args: concepts: 概念列表 chat_id: 聊天ID Returns: str: 检索结果字符串 """ if not concepts: return "" from src.jargon.jargon_miner import search_jargon results = [] exact_matches = [] # 收集所有精确匹配的概念 for concept in concepts: concept = concept.strip() if not concept: continue # 先尝试精确匹配 jargon_results = search_jargon(keyword=concept, chat_id=chat_id, limit=10, case_sensitive=False, fuzzy=False) is_fuzzy_match = False # 如果精确匹配未找到,尝试模糊搜索 if not jargon_results: jargon_results = search_jargon(keyword=concept, chat_id=chat_id, limit=10, case_sensitive=False, fuzzy=True) is_fuzzy_match = True if jargon_results: # 找到结果 if is_fuzzy_match: # 模糊匹配 output_parts = [f"未精确匹配到'{concept}'"] for result in jargon_results: found_content = result.get("content", "").strip() meaning = result.get("meaning", "").strip() if found_content and meaning: output_parts.append(f"找到 '{found_content}' 的含义为:{meaning}") results.append(",".join(output_parts)) logger.info(f"在jargon库中找到匹配(模糊搜索): {concept},找到{len(jargon_results)}条结果") else: # 精确匹配 output_parts = [] for result in jargon_results: meaning = result.get("meaning", "").strip() if meaning: output_parts.append(f"'{concept}' 为黑话或者网络简写,含义为:{meaning}") results.append(";".join(output_parts) if len(output_parts) > 1 else output_parts[0]) exact_matches.append(concept) # 收集精确匹配的概念,稍后统一打印 else: # 未找到,不返回占位信息,只记录日志 logger.info(f"在jargon库中未找到匹配: {concept}") # 合并所有精确匹配的日志 if exact_matches: logger.info(f"找到黑话: {', '.join(exact_matches)},共找到{len(exact_matches)}条结果") if results: return "【概念检索结果】\n" + "\n".join(results) + "\n" return "" def _match_jargon_from_text(chat_text: str, chat_id: str) -> List[str]: """直接在聊天文本中匹配已知的jargon,返回出现过的黑话列表""" # print(chat_text) if not chat_text or not chat_text.strip(): return [] start_time = time.time() query = Jargon.select().where((Jargon.meaning.is_null(False)) & (Jargon.meaning != "")) if global_config.jargon.all_global: query = query.where(Jargon.is_global) query = query.order_by(Jargon.count.desc()) query_time = time.time() matched: Dict[str, None] = {} for jargon in query: content = (jargon.content or "").strip() if not content: continue if not global_config.jargon.all_global and not jargon.is_global: chat_id_list = parse_chat_id_list(jargon.chat_id) if not chat_id_list_contains(chat_id_list, chat_id): continue pattern = re.escape(content) if re.search(r"[\u4e00-\u9fff]", content): search_pattern = pattern else: search_pattern = r"\b" + pattern + r"\b" if re.search(search_pattern, chat_text, re.IGNORECASE): matched[content] = None # end_time = time.time() logger.info( # f"记忆检索黑话匹配: 查询耗时 {(query_time - start_time):.3f}s, " # f"匹配耗时 {(end_time - query_time):.3f}s, 总耗时 {(end_time - start_time):.3f}s, " f"匹配到 {len(matched)} 个黑话" ) return list(matched.keys()) async def _react_agent_solve_question( question: str, chat_id: str, max_iterations: int = 5, timeout: float = 30.0, initial_info: str = "", initial_jargon_concepts: Optional[List[str]] = None, ) -> Tuple[bool, str, List[Dict[str, Any]], bool]: """使用ReAct架构的Agent来解决问题 Args: question: 要回答的问题 chat_id: 聊天ID max_iterations: 最大迭代次数 timeout: 超时时间(秒) initial_info: 初始信息(如概念检索结果),将作为collected_info的初始值 initial_jargon_concepts: 预先已解析过的黑话列表,避免重复解释 Returns: Tuple[bool, str, List[Dict[str, Any]], bool]: (是否找到答案, 答案内容, 思考步骤列表, 是否超时) """ start_time = time.time() collected_info = initial_info if initial_info else "" enable_jargon_detection = global_config.memory.enable_jargon_detection seen_jargon_concepts: Set[str] = set() if enable_jargon_detection and initial_jargon_concepts: for concept in initial_jargon_concepts: concept = (concept or "").strip() if concept: seen_jargon_concepts.add(concept) thinking_steps = [] is_timeout = False conversation_messages: List[Message] = [] for iteration in range(max_iterations): # 检查超时 if time.time() - start_time > timeout: logger.warning(f"ReAct Agent超时,已迭代{iteration}次") is_timeout = True break # 获取工具注册器 tool_registry = get_tool_registry() # 获取bot_name bot_name = global_config.bot.nickname # 获取当前时间 time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 计算剩余迭代次数 current_iteration = iteration + 1 remaining_iterations = max_iterations - current_iteration is_final_iteration = current_iteration >= max_iterations if is_final_iteration: # 最后一次迭代,使用最终prompt tool_definitions = [] logger.info( f"ReAct Agent 第 {iteration + 1} 次迭代,问题: {question}|可用工具数量: 0(最后一次迭代,不提供工具调用)" ) prompt = await global_prompt_manager.format_prompt( "memory_retrieval_react_final_prompt", bot_name=bot_name, time_now=time_now, question=question, collected_info=collected_info if collected_info else "暂无信息", current_iteration=current_iteration, remaining_iterations=remaining_iterations, max_iterations=max_iterations, ) if global_config.debug.show_memory_prompt: logger.info(f"ReAct Agent 第 {iteration + 1} 次Prompt: {prompt}") success, response, reasoning_content, model_name, tool_calls = await llm_api.generate_with_model_with_tools( prompt, model_config=model_config.model_task_config.tool_use, tool_options=tool_definitions, request_type="memory.react", ) else: # 非最终迭代,使用head_prompt tool_definitions = tool_registry.get_tool_definitions() logger.info( f"ReAct Agent 第 {iteration + 1} 次迭代,问题: {question}|可用工具数量: {len(tool_definitions)}" ) head_prompt = await global_prompt_manager.format_prompt( "memory_retrieval_react_prompt_head", bot_name=bot_name, time_now=time_now, question=question, collected_info=collected_info if collected_info else "", current_iteration=current_iteration, remaining_iterations=remaining_iterations, max_iterations=max_iterations, ) def message_factory( _client, *, _head_prompt: str = head_prompt, _conversation_messages: List[Message] = conversation_messages, ) -> List[Message]: messages: List[Message] = [] system_builder = MessageBuilder() system_builder.set_role(RoleType.System) system_builder.add_text_content(_head_prompt) messages.append(system_builder.build()) messages.extend(_conversation_messages) if global_config.debug.show_memory_prompt: # 优化日志展示 - 合并所有消息到一条日志 log_lines = [] for idx, msg in enumerate(messages, 1): role_name = msg.role.value if hasattr(msg.role, "value") else str(msg.role) # 处理内容 - 显示完整内容,不截断 if isinstance(msg.content, str): full_content = msg.content content_type = "文本" elif isinstance(msg.content, list): text_parts = [item for item in msg.content if isinstance(item, str)] image_count = len([item for item in msg.content if isinstance(item, tuple)]) full_content = "".join(text_parts) if text_parts else "" content_type = f"混合({len(text_parts)}段文本, {image_count}张图片)" else: full_content = str(msg.content) content_type = "未知" # 构建单条消息的日志信息 msg_info = f"\n[消息 {idx}] 角色: {role_name} 内容类型: {content_type}\n========================================" if full_content: msg_info += f"\n{full_content}" if msg.tool_calls: msg_info += f"\n 工具调用: {len(msg.tool_calls)}个" for tool_call in msg.tool_calls: msg_info += f"\n - {tool_call}" if msg.tool_call_id: msg_info += f"\n 工具调用ID: {msg.tool_call_id}" log_lines.append(msg_info) # 合并所有消息为一条日志输出 logger.info(f"消息列表 (共{len(messages)}条):{''.join(log_lines)}") return messages ( success, response, reasoning_content, model_name, tool_calls, ) = await llm_api.generate_with_model_with_tools_by_message_factory( message_factory, model_config=model_config.model_task_config.tool_use, tool_options=tool_definitions, request_type="memory.react", ) logger.info( f"ReAct Agent 第 {iteration + 1} 次迭代 模型: {model_name} ,调用工具数量: {len(tool_calls) if tool_calls else 0} ,调用工具响应: {response}" ) if not success: logger.error(f"ReAct Agent LLM调用失败: {response}") break assistant_message: Optional[Message] = None if tool_calls: assistant_builder = MessageBuilder() assistant_builder.set_role(RoleType.Assistant) if response and response.strip(): assistant_builder.add_text_content(response) assistant_builder.set_tool_calls(tool_calls) assistant_message = assistant_builder.build() elif response and response.strip(): assistant_builder = MessageBuilder() assistant_builder.set_role(RoleType.Assistant) assistant_builder.add_text_content(response) assistant_message = assistant_builder.build() # 记录思考步骤 step = {"iteration": iteration + 1, "thought": response, "actions": [], "observations": []} # 优先从思考内容中提取found_answer或not_enough_info def extract_quoted_content(text, func_name, param_name): """从文本中提取函数调用中参数的值,支持单引号和双引号 Args: text: 要搜索的文本 func_name: 函数名,如 'found_answer' param_name: 参数名,如 'answer' Returns: 提取的参数值,如果未找到则返回None """ if not text: return None # 查找函数调用位置(不区分大小写) func_pattern = func_name.lower() text_lower = text.lower() func_pos = text_lower.find(func_pattern) if func_pos == -1: return None # 查找参数名和等号 param_pattern = f"{param_name}=" param_pos = text_lower.find(param_pattern, func_pos) if param_pos == -1: return None # 跳过参数名、等号和空白 start_pos = param_pos + len(param_pattern) while start_pos < len(text) and text[start_pos] in " \t\n": start_pos += 1 if start_pos >= len(text): return None # 确定引号类型 quote_char = text[start_pos] if quote_char not in ['"', "'"]: return None # 查找匹配的结束引号(考虑转义) end_pos = start_pos + 1 while end_pos < len(text): if text[end_pos] == quote_char: # 检查是否是转义的引号 if end_pos > start_pos + 1 and text[end_pos - 1] == "\\": end_pos += 1 continue # 找到匹配的引号 content = text[start_pos + 1 : end_pos] # 处理转义字符 content = content.replace('\\"', '"').replace("\\'", "'").replace("\\\\", "\\") return content end_pos += 1 return None # 从LLM的直接输出内容中提取found_answer或not_enough_info found_answer_content = None not_enough_info_reason = None # 只检查response(LLM的直接输出内容),不检查reasoning_content if response: found_answer_content = extract_quoted_content(response, "found_answer", "answer") if not found_answer_content: not_enough_info_reason = extract_quoted_content(response, "not_enough_info", "reason") # 如果从输出内容中找到了答案,直接返回 if found_answer_content: step["actions"].append({"action_type": "found_answer", "action_params": {"answer": found_answer_content}}) step["observations"] = ["从LLM输出内容中检测到found_answer"] thinking_steps.append(step) logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 找到关于问题{question}的答案: {found_answer_content}") return True, found_answer_content, thinking_steps, False if not_enough_info_reason: step["actions"].append( {"action_type": "not_enough_info", "action_params": {"reason": not_enough_info_reason}} ) step["observations"] = ["从LLM输出内容中检测到not_enough_info"] thinking_steps.append(step) logger.info( f"ReAct Agent 第 {iteration + 1} 次迭代 无法找到关于问题{question}的答案,原因: {not_enough_info_reason}" ) return False, not_enough_info_reason, thinking_steps, False if is_final_iteration: step["actions"].append( {"action_type": "not_enough_info", "action_params": {"reason": "已到达最后一次迭代,无法找到答案"}} ) step["observations"] = ["已到达最后一次迭代,无法找到答案"] thinking_steps.append(step) logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 已到达最后一次迭代,无法找到答案") return False, "已到达最后一次迭代,无法找到答案", thinking_steps, False if assistant_message: conversation_messages.append(assistant_message) # 记录思考过程到collected_info中 if reasoning_content or response: thought_summary = reasoning_content or (response[:200] if response else "") if thought_summary: collected_info += f"\n[思考] {thought_summary}\n" # 处理工具调用 if not tool_calls: # 没有工具调用,说明LLM在思考中已经给出了答案(已在前面检查),或者需要继续查询 # 如果思考中没有答案,说明需要继续查询或等待下一轮 if response and response.strip(): # 如果响应不为空,记录思考过程,继续下一轮迭代 step["observations"] = [f"思考完成,但未调用工具。响应: {response}"] logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 思考完成但未调用工具: {response}") # 继续下一轮迭代,让LLM有机会在思考中给出found_answer或继续查询 collected_info += f"思考: {response}" thinking_steps.append(step) continue else: logger.warning(f"ReAct Agent 第 {iteration + 1} 次迭代 无工具调用且无响应") step["observations"] = ["无响应且无工具调用"] thinking_steps.append(step) break # 处理工具调用 tool_tasks = [] for i, tool_call in enumerate(tool_calls): tool_name = tool_call.func_name tool_args = tool_call.args or {} logger.info( f"ReAct Agent 第 {iteration + 1} 次迭代 工具调用 {i + 1}/{len(tool_calls)}: {tool_name}({tool_args})" ) # 普通工具调用 tool = tool_registry.get_tool(tool_name) if tool: # 准备工具参数(需要添加chat_id如果工具需要) tool_params = tool_args.copy() # 如果工具函数签名需要chat_id,添加它 import inspect sig = inspect.signature(tool.execute_func) if "chat_id" in sig.parameters: tool_params["chat_id"] = chat_id # 创建异步任务 async def execute_single_tool(tool_instance, params, tool_name_str, iter_num): try: observation = await tool_instance.execute(**params) param_str = ", ".join([f"{k}={v}" for k, v in params.items() if k != "chat_id"]) return f"查询{tool_name_str}({param_str})的结果:{observation}" except Exception as e: error_msg = f"工具执行失败: {str(e)}" logger.error(f"ReAct Agent 第 {iter_num + 1} 次迭代 工具 {tool_name_str} {error_msg}") return f"查询{tool_name_str}失败: {error_msg}" tool_tasks.append(execute_single_tool(tool, tool_params, tool_name, iteration)) step["actions"].append({"action_type": tool_name, "action_params": tool_args}) else: error_msg = f"未知的工具类型: {tool_name}" logger.warning(f"ReAct Agent 第 {iteration + 1} 次迭代 工具 {i + 1}/{len(tool_calls)} {error_msg}") tool_tasks.append(asyncio.create_task(asyncio.sleep(0, result=f"查询{tool_name}失败: {error_msg}"))) # 并行执行所有工具 if tool_tasks: observations = await asyncio.gather(*tool_tasks, return_exceptions=True) # 处理执行结果 for i, (tool_call_item, observation) in enumerate(zip(tool_calls, observations, strict=False)): if isinstance(observation, Exception): observation = f"工具执行异常: {str(observation)}" logger.error(f"ReAct Agent 第 {iteration + 1} 次迭代 工具 {i + 1} 执行异常: {observation}") observation_text = observation if isinstance(observation, str) else str(observation) stripped_observation = observation_text.strip() step["observations"].append(observation_text) collected_info += f"\n{observation_text}\n" if stripped_observation: tool_builder = MessageBuilder() tool_builder.set_role(RoleType.Tool) tool_builder.add_text_content(observation_text) tool_builder.add_tool_call(tool_call_item.call_id) conversation_messages.append(tool_builder.build()) if enable_jargon_detection: jargon_concepts = _match_jargon_from_text(stripped_observation, chat_id) if jargon_concepts: jargon_info = "" new_concepts = [] for concept in jargon_concepts: normalized_concept = concept.strip() if normalized_concept and normalized_concept not in seen_jargon_concepts: new_concepts.append(normalized_concept) seen_jargon_concepts.add(normalized_concept) if new_concepts: jargon_info = await _retrieve_concepts_with_jargon(new_concepts, chat_id) if jargon_info: collected_info += f"\n{jargon_info}\n" logger.info(f"工具输出触发黑话解析: {new_concepts}") # logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 工具 {i+1} 执行结果: {observation_text}") thinking_steps.append(step) # 达到最大迭代次数或超时,但Agent没有明确返回found_answer # 迭代超时应该直接视为not_enough_info,而不是使用已有信息 # 只有Agent明确返回found_answer时,才认为找到了答案 if collected_info: logger.warning( f"ReAct Agent达到最大迭代次数或超时,但未明确返回found_answer。已收集信息: {collected_info[:100]}..." ) if is_timeout: logger.warning("ReAct Agent超时,直接视为not_enough_info") else: logger.warning("ReAct Agent达到最大迭代次数,直接视为not_enough_info") return False, "未找到相关信息", thinking_steps, is_timeout def _get_recent_query_history(chat_id: str, time_window_seconds: float = 300.0) -> str: """获取最近一段时间内的查询历史 Args: chat_id: 聊天ID time_window_seconds: 时间窗口(秒),默认10分钟 Returns: str: 格式化的查询历史字符串 """ try: current_time = time.time() start_time = current_time - time_window_seconds # 查询最近时间窗口内的记录,按更新时间倒序 records = ( ThinkingBack.select() .where((ThinkingBack.chat_id == chat_id) & (ThinkingBack.update_time >= start_time)) .order_by(ThinkingBack.update_time.desc()) .limit(5) # 最多返回5条最近的记录 ) if not records.exists(): return "" history_lines = [] history_lines.append("最近已查询的问题和结果:") for record in records: status = "✓ 已找到答案" if record.found_answer else "✗ 未找到答案" answer_preview = "" # 只有找到答案时才显示答案内容 if record.found_answer and record.answer: # 截取答案前100字符 answer_preview = record.answer[:100] if len(record.answer) > 100: answer_preview += "..." history_lines.append(f"- 问题:{record.question}") history_lines.append(f" 状态:{status}") if answer_preview: history_lines.append(f" 答案:{answer_preview}") history_lines.append("") # 空行分隔 return "\n".join(history_lines) except Exception as e: logger.error(f"获取查询历史失败: {e}") return "" def _store_thinking_back( chat_id: str, question: str, context: str, found_answer: bool, answer: str, thinking_steps: List[Dict[str, Any]] ) -> None: """存储或更新思考过程到数据库(如果已存在则更新,否则创建) Args: chat_id: 聊天ID question: 问题 context: 上下文信息 found_answer: 是否找到答案 answer: 答案内容 thinking_steps: 思考步骤列表 """ try: now = time.time() # 先查询是否已存在相同chat_id和问题的记录 existing = ( ThinkingBack.select() .where((ThinkingBack.chat_id == chat_id) & (ThinkingBack.question == question)) .order_by(ThinkingBack.update_time.desc()) .limit(1) ) if existing.exists(): # 更新现有记录 record = existing.get() record.context = context record.found_answer = found_answer record.answer = answer record.thinking_steps = json.dumps(thinking_steps, ensure_ascii=False) record.update_time = now record.save() logger.info(f"已更新思考过程到数据库,问题: {question[:50]}...") else: # 创建新记录 ThinkingBack.create( chat_id=chat_id, question=question, context=context, found_answer=found_answer, answer=answer, thinking_steps=json.dumps(thinking_steps, ensure_ascii=False), create_time=now, update_time=now, ) # logger.info(f"已创建思考过程到数据库,问题: {question[:50]}...") except Exception as e: logger.error(f"存储思考过程失败: {e}") async def _process_single_question( question: str, chat_id: str, context: str, initial_info: str = "", initial_jargon_concepts: Optional[List[str]] = None, ) -> Optional[str]: """处理单个问题的查询 Args: question: 要查询的问题 chat_id: 聊天ID context: 上下文信息 initial_info: 初始信息(如概念检索结果),将传递给ReAct Agent initial_jargon_concepts: 已经处理过的黑话概念列表,用于ReAct阶段的去重 Returns: Optional[str]: 如果找到答案,返回格式化的结果字符串,否则返回None """ # logger.info(f"开始处理问题: {question}") _cleanup_stale_not_found_thinking_back() question_initial_info = initial_info or "" # 直接使用ReAct Agent查询(不再从thinking_back获取缓存) # logger.info(f"使用ReAct Agent查询,问题: {question[:50]}...") jargon_concepts_for_agent = initial_jargon_concepts if global_config.memory.enable_jargon_detection else None found_answer, answer, thinking_steps, is_timeout = await _react_agent_solve_question( question=question, chat_id=chat_id, max_iterations=global_config.memory.max_agent_iterations, timeout=120.0, initial_info=question_initial_info, initial_jargon_concepts=jargon_concepts_for_agent, ) # 存储查询历史到数据库(超时时不存储) if not is_timeout: _store_thinking_back( chat_id=chat_id, question=question, context=context, found_answer=found_answer, answer=answer, thinking_steps=thinking_steps, ) else: logger.info(f"ReAct Agent超时,不存储到数据库,问题: {question[:50]}...") if found_answer and answer: return f"问题:{question}\n答案:{answer}" return None async def build_memory_retrieval_prompt( message: str, sender: str, target: str, chat_stream, tool_executor, ) -> str: """构建记忆检索提示 使用两段式查询:第一步生成问题,第二步使用ReAct Agent查询答案 Args: message: 聊天历史记录 sender: 发送者名称 target: 目标消息内容 chat_stream: 聊天流对象 tool_executor: 工具执行器(保留参数以兼容接口) Returns: str: 记忆检索结果字符串 """ start_time = time.time() logger.info(f"检测是否需要回忆,元消息:{message[:30]}...,消息长度: {len(message)}") try: time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) bot_name = global_config.bot.nickname chat_id = chat_stream.stream_id # 获取最近查询历史(最近1小时内的查询) recent_query_history = _get_recent_query_history(chat_id, time_window_seconds=300.0) if not recent_query_history: recent_query_history = "最近没有查询记录。" # 第一步:生成问题 question_prompt = await global_prompt_manager.format_prompt( "memory_retrieval_question_prompt", bot_name=bot_name, time_now=time_now, chat_history=message, recent_query_history=recent_query_history, sender=sender, target_message=target, ) success, response, reasoning_content, model_name = await llm_api.generate_with_model( question_prompt, model_config=model_config.model_task_config.tool_use, request_type="memory.question", ) if global_config.debug.show_memory_prompt: logger.info(f"记忆检索问题生成提示词: {question_prompt}") # logger.info(f"记忆检索问题生成响应: {response}") if not success: logger.error(f"LLM生成问题失败: {response}") return "" # 解析概念列表和问题列表 _, questions = _parse_questions_json(response) if questions: logger.info(f"解析到 {len(questions)} 个问题: {questions}") enable_jargon_detection = global_config.memory.enable_jargon_detection concepts: List[str] = [] if enable_jargon_detection: # 使用匹配逻辑自动识别聊天中的黑话概念 concepts = _match_jargon_from_text(message, chat_id) if concepts: logger.info(f"黑话匹配命中 {len(concepts)} 个概念: {concepts}") else: logger.debug("黑话匹配未命中任何概念") else: logger.debug("已禁用记忆检索中的黑话识别") # 对匹配到的概念进行jargon检索,作为初始信息 initial_info = "" if enable_jargon_detection and concepts: concept_info = await _retrieve_concepts_with_jargon(concepts, chat_id) if concept_info: initial_info += concept_info logger.info(f"概念检索完成,结果: {concept_info}") else: logger.info("概念检索未找到任何结果") if not questions: logger.debug("模型认为不需要检索记忆或解析失败,不返回任何查询结果") end_time = time.time() logger.info(f"无当次查询,不返回任何结果,耗时: {(end_time - start_time):.3f}秒") return "" # 第二步:并行处理所有问题(使用配置的最大迭代次数/120秒超时) max_iterations = global_config.memory.max_agent_iterations logger.debug(f"问题数量: {len(questions)},设置最大迭代次数: {max_iterations},超时时间: 120秒") # 并行处理所有问题,将概念检索结果作为初始信息传递 question_tasks = [ _process_single_question( question=question, chat_id=chat_id, context=message, initial_info=initial_info, initial_jargon_concepts=concepts if enable_jargon_detection else None, ) for question in questions ] # 并行执行所有查询任务 results = await asyncio.gather(*question_tasks, return_exceptions=True) # 收集所有有效结果 question_results: List[str] = [] for i, result in enumerate(results): if isinstance(result, Exception): logger.error(f"处理问题 '{questions[i]}' 时发生异常: {result}") elif result is not None: question_results.append(result) end_time = time.time() if question_results: retrieved_memory = "\n\n".join(question_results) logger.info(f"记忆检索成功,耗时: {(end_time - start_time):.3f}秒,包含 {len(question_results)} 条记忆") return f"你回忆起了以下信息:\n{retrieved_memory}\n如果与回复内容相关,可以参考这些回忆的信息。\n" else: logger.debug("所有问题均未找到答案") return "" except Exception as e: logger.error(f"记忆检索时发生异常: {str(e)}") return "" def _parse_questions_json(response: str) -> Tuple[List[str], List[str]]: """解析问题JSON,返回概念列表和问题列表 Args: response: LLM返回的响应 Returns: Tuple[List[str], List[str]]: (概念列表, 问题列表) """ try: # 尝试提取JSON(可能包含在```json代码块中) json_pattern = r"```json\s*(.*?)\s*```" matches = re.findall(json_pattern, response, re.DOTALL) if matches: json_str = matches[0] else: # 尝试直接解析整个响应 json_str = response.strip() # 修复可能的JSON错误 repaired_json = repair_json(json_str) # 解析JSON parsed = json.loads(repaired_json) # 只支持新格式:包含concepts和questions的对象 if not isinstance(parsed, dict): logger.warning(f"解析的JSON不是对象格式: {parsed}") return [], [] concepts_raw = parsed.get("concepts", []) questions_raw = parsed.get("questions", []) # 确保是列表 if not isinstance(concepts_raw, list): concepts_raw = [] if not isinstance(questions_raw, list): questions_raw = [] # 确保所有元素都是字符串 concepts = [c for c in concepts_raw if isinstance(c, str) and c.strip()] questions = [q for q in questions_raw if isinstance(q, str) and q.strip()] return concepts, questions except Exception as e: logger.error(f"解析问题JSON失败: {e}, 响应内容: {response[:200]}...") return [], []