import asyncio import time from random import random from typing import List, Optional from src.config.config import global_config from src.common.logger import get_logger from src.person_info.person_info import get_person_info_manager from src.plugin_system.apis import generator_api from maim_message import UserInfo, Seg from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager from src.chat.utils.timer_calculator import Timer from src.common.message_repository import count_messages from src.chat.utils.prompt_builder import global_prompt_manager from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet from src.chat.message_receive.normal_message_sender import message_manager from src.chat.normal_chat.willing.willing_manager import get_willing_manager from src.chat.planner_actions.action_manager import ActionManager from src.person_info.relationship_builder_manager import relationship_builder_manager from .priority_manager import PriorityManager import traceback from src.chat.planner_actions.planner import ActionPlanner from src.chat.planner_actions.action_modifier import ActionModifier from src.chat.utils.utils import get_chat_type_and_target_info from src.manager.mood_manager import mood_manager willing_manager = get_willing_manager() logger = get_logger("normal_chat") class NormalChat: """ 普通聊天处理类,负责处理非核心对话的聊天逻辑。 每个聊天(私聊或群聊)都会有一个独立的NormalChat实例。 """ def __init__( self, chat_stream: ChatStream, interest_dict: dict = None, on_switch_to_focus_callback=None, get_cooldown_progress_callback=None, ): """ 初始化NormalChat实例。 Args: chat_stream (ChatStream): 聊天流对象,包含与特定聊天相关的所有信息。 """ self.chat_stream = chat_stream self.stream_id = chat_stream.stream_id self.stream_name = get_chat_manager().get_stream_name(self.stream_id) or self.stream_id self.relationship_builder = relationship_builder_manager.get_or_create_builder(self.stream_id) # Interest dict self.interest_dict = interest_dict self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.stream_id) self.willing_amplifier = 1 self.start_time = time.time() self.mood_manager = mood_manager self.start_time = time.time() self._initialized = False # Track initialization status # Planner相关初始化 self.action_manager = ActionManager() self.planner = ActionPlanner(self.stream_id, self.action_manager, mode="normal") self.action_modifier = ActionModifier(self.action_manager, self.stream_id) self.enable_planner = global_config.normal_chat.enable_planner # 从配置中读取是否启用planner # 记录最近的回复内容,每项包含: {time, user_message, response, is_mentioned, is_reference_reply} self.recent_replies = [] self.max_replies_history = 20 # 最多保存最近20条回复记录 # 添加回调函数,用于在满足条件时通知切换到focus_chat模式 self.on_switch_to_focus_callback = on_switch_to_focus_callback # 添加回调函数,用于获取冷却进度 self.get_cooldown_progress_callback = get_cooldown_progress_callback self._disabled = False # 增加停用标志 self.timeout_count = 0 self.action_type: Optional[str] = None # 当前动作类型 self.is_parallel_action: bool = False # 是否是可并行动作 # 任务管理 self._chat_task: Optional[asyncio.Task] = None self._disabled = False # 停用标志 # 新增:回复模式和优先级管理器 self.reply_mode = self.chat_stream.context.get_priority_mode() if self.reply_mode == "priority": interest_dict = interest_dict or {} self.priority_manager = PriorityManager( interest_dict=interest_dict, normal_queue_max_size=5, ) else: self.priority_manager = None async def disable(self): """停用 NormalChat 实例,停止所有后台任务""" self._disabled = True if self._chat_task and not self._chat_task.done(): self._chat_task.cancel() if self.reply_mode == "priority" and self._priority_chat_task and not self._priority_chat_task.done(): self._priority_chat_task.cancel() logger.info(f"[{self.stream_name}] NormalChat 已停用。") async def _priority_chat_loop_add_message(self): while not self._disabled: try: # 创建字典条目的副本以避免在迭代时发生修改 items_to_process = list(self.interest_dict.items()) for msg_id, value in items_to_process: # 尝试从原始字典中弹出条目,如果它已被其他任务处理,则跳过 if self.interest_dict.pop(msg_id, None) is None: continue # 条目已被其他任务处理 message, interest_value, _ = value if not self._disabled: # 更新消息段信息 # self._update_user_message_segments(message) # 添加消息到优先级管理器 if self.priority_manager: self.priority_manager.add_message(message, interest_value) except Exception: logger.error( f"[{self.stream_name}] 优先级聊天循环添加消息时出现错误: {traceback.format_exc()}", exc_info=True ) print(traceback.format_exc()) # 出现错误时,等待一段时间再重试 raise await asyncio.sleep(0.1) async def _priority_chat_loop(self): """ 使用优先级队列的消息处理循环。 """ while not self._disabled: try: if not self.priority_manager.is_empty(): # 获取最高优先级的消息 message = self.priority_manager.get_highest_priority_message() if message: logger.info( f"[{self.stream_name}] 从队列中取出消息进行处理: User {message.message_info.user_info.user_id}, Time: {time.strftime('%H:%M:%S', time.localtime(message.message_info.time))}" ) do_reply = await self.reply_one_message(message) response_set = do_reply if do_reply else [] factor = 0.5 cnt = sum([len(r) for r in response_set]) await asyncio.sleep(max(1, factor * cnt - 3)) # 等待tts # 等待一段时间再检查队列 await asyncio.sleep(1) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 优先级聊天循环被取消。") break except Exception: logger.error(f"[{self.stream_name}] 优先级聊天循环出现错误: {traceback.format_exc()}", exc_info=True) # 出现错误时,等待更长时间避免频繁报错 await asyncio.sleep(10) # 改为实例方法 async def _create_thinking_message(self, message: MessageRecv, timestamp: Optional[float] = None) -> str: """创建思考消息""" messageinfo = message.message_info bot_user_info = UserInfo( user_id=global_config.bot.qq_account, user_nickname=global_config.bot.nickname, platform=messageinfo.platform, ) thinking_time_point = round(time.time(), 2) thinking_id = "tid" + str(thinking_time_point) thinking_message = MessageThinking( message_id=thinking_id, chat_stream=self.chat_stream, bot_user_info=bot_user_info, reply=message, thinking_start_time=thinking_time_point, timestamp=timestamp if timestamp is not None else None, ) await message_manager.add_message(thinking_message) return thinking_id # 改为实例方法 async def _add_messages_to_manager( self, message: MessageRecv, response_set: List[str], thinking_id ) -> Optional[MessageSending]: """发送回复消息""" container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id thinking_message = None for msg in container.messages[:]: if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id: thinking_message = msg container.messages.remove(msg) break if not thinking_message: logger.warning(f"[{self.stream_name}] 未找到对应的思考消息 {thinking_id},可能已超时被移除") return None thinking_start_time = thinking_message.thinking_start_time message_set = MessageSet(self.chat_stream, thinking_id) # 使用 self.chat_stream mark_head = False first_bot_msg = None for msg in response_set: if global_config.debug.debug_show_chat_mode: msg += "ⁿ" message_segment = Seg(type="text", data=msg) bot_message = MessageSending( message_id=thinking_id, chat_stream=self.chat_stream, # 使用 self.chat_stream bot_user_info=UserInfo( user_id=global_config.bot.qq_account, user_nickname=global_config.bot.nickname, platform=message.message_info.platform, ), sender_info=message.message_info.user_info, message_segment=message_segment, reply=message, is_head=not mark_head, is_emoji=False, thinking_start_time=thinking_start_time, apply_set_reply_logic=True, ) if not mark_head: mark_head = True first_bot_msg = bot_message message_set.add_message(bot_message) await message_manager.add_message(message_set) return first_bot_msg async def _reply_interested_message(self) -> None: """ 后台任务方法,轮询当前实例关联chat的兴趣消息 通常由start_monitoring_interest()启动 """ logger.debug(f"[{self.stream_name}] 兴趣监控任务开始") try: while True: # 第一层检查:立即检查取消和停用状态 if self._disabled: logger.info(f"[{self.stream_name}] 检测到停用标志,退出兴趣监控") break # 检查当前任务是否已被取消 current_task = asyncio.current_task() if current_task and current_task.cancelled(): logger.info(f"[{self.stream_name}] 当前任务已被取消,退出") break try: # 短暂等待,让出控制权 await asyncio.sleep(0.1) # 第二层检查:睡眠后再次检查状态 if self._disabled: logger.info(f"[{self.stream_name}] 睡眠后检测到停用标志,退出") break # 获取待处理消息 items_to_process = list(self.interest_dict.items()) if not items_to_process: # 没有消息时继续下一轮循环 continue # 第三层检查:在处理消息前最后检查一次 if self._disabled: logger.info(f"[{self.stream_name}] 处理消息前检测到停用标志,退出") break # 使用异步上下文管理器处理消息 try: async with global_prompt_manager.async_message_scope( self.chat_stream.context.get_template_name() ): # 在上下文内部再次检查取消状态 if self._disabled: logger.info(f"[{self.stream_name}] 在处理上下文中检测到停止信号,退出") break semaphore = asyncio.Semaphore(5) async def process_and_acquire(msg_id, message, interest_value, is_mentioned, semaphore): """处理单个兴趣消息并管理信号量""" async with semaphore: try: # 在处理每个消息前检查停止状态 if self._disabled: logger.debug( f"[{self.stream_name}] 处理消息时检测到停用,跳过消息 {msg_id}" ) return # 处理消息 self.adjust_reply_frequency() await self.normal_response( message=message, is_mentioned=is_mentioned, interested_rate=interest_value * self.willing_amplifier, ) except asyncio.CancelledError: logger.debug(f"[{self.stream_name}] 处理消息 {msg_id} 时被取消") raise # 重新抛出取消异常 except Exception as e: logger.error(f"[{self.stream_name}] 处理兴趣消息{msg_id}时出错: {e}") # 不打印完整traceback,避免日志污染 finally: # 无论如何都要清理消息 self.interest_dict.pop(msg_id, None) tasks = [ process_and_acquire(msg_id, message, interest_value, is_mentioned, semaphore) for msg_id, (message, interest_value, is_mentioned) in items_to_process ] if tasks: await asyncio.gather(*tasks, return_exceptions=True) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 处理上下文时任务被取消") break except Exception as e: logger.error(f"[{self.stream_name}] 处理上下文时出错: {e}") # 出错后短暂等待,避免快速重试 await asyncio.sleep(0.5) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 主循环中任务被取消") break except Exception as e: logger.error(f"[{self.stream_name}] 主循环出错: {e}") # 出错后等待一秒再继续 await asyncio.sleep(1.0) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 兴趣监控任务被取消") except Exception as e: logger.error(f"[{self.stream_name}] 兴趣监控任务严重错误: {e}") finally: logger.debug(f"[{self.stream_name}] 兴趣监控任务结束") # 改为实例方法, 移除 chat 参数 async def normal_response(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None: """ 处理接收到的消息。 在"兴趣"模式下,判断是否回复并生成内容。 """ if self._disabled: return # 新增:在auto模式下检查是否需要直接切换到focus模式 if global_config.chat.chat_mode == "auto": if await self._check_should_switch_to_focus(): logger.info(f"[{self.stream_name}] 检测到切换到focus聊天模式的条件,尝试执行切换") if self.on_switch_to_focus_callback: switched_successfully = await self.on_switch_to_focus_callback() if switched_successfully: logger.info(f"[{self.stream_name}] 成功切换到focus模式,中止NormalChat处理") return else: logger.info(f"[{self.stream_name}] 切换到focus模式失败(可能在冷却中),继续NormalChat处理") else: logger.warning(f"[{self.stream_name}] 没有设置切换到focus聊天模式的回调函数,无法执行切换") # --- 以下为 "兴趣" 模式逻辑 (从 _process_message 合并而来) --- timing_results = {} reply_probability = ( 1.0 if is_mentioned and global_config.normal_chat.mentioned_bot_inevitable_reply else 0.0 ) # 如果被提及,且开启了提及必回复,则基础概率为1,否则需要意愿判断 # 意愿管理器:设置当前message信息 willing_manager.setup(message, self.chat_stream, is_mentioned, interested_rate) # 获取回复概率 # is_willing = False # 仅在未被提及或基础概率不为1时查询意愿概率 if reply_probability < 1: # 简化逻辑,如果未提及 (reply_probability 为 0),则获取意愿概率 # is_willing = True reply_probability = await willing_manager.get_reply_probability(message.message_info.message_id) if message.message_info.additional_config: if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys(): reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"] reply_probability = min(max(reply_probability, 0), 1) # 确保概率在 0-1 之间 # 处理表情包 if message.is_emoji or message.is_picid: reply_probability = 0 # 应用疲劳期回复频率调整 fatigue_multiplier = self._get_fatigue_reply_multiplier() original_probability = reply_probability reply_probability *= fatigue_multiplier # 如果应用了疲劳调整,记录日志 if fatigue_multiplier < 1.0: logger.info( f"[{self.stream_name}] 疲劳期回复频率调整: {original_probability * 100:.1f}% -> {reply_probability * 100:.1f}% (系数: {fatigue_multiplier:.2f})" ) # 打印消息信息 mes_name = self.chat_stream.group_info.group_name if self.chat_stream.group_info else "私聊" # current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time)) # 使用 self.stream_id # willing_log = f"[激活值:{await willing_manager.get_willing(self.stream_id):.2f}]" if is_willing else "" if reply_probability > 0.1: logger.info( f"[{mes_name}]" f"{message.message_info.user_info.user_nickname}:" # 使用 self.chat_stream f"{message.processed_plain_text}[兴趣:{interested_rate:.2f}][回复概率:{reply_probability * 100:.1f}%]" ) do_reply = False response_set = None # 初始化 response_set if random() < reply_probability: with Timer("获取回复", timing_results): await willing_manager.before_generate_reply_handle(message.message_info.message_id) do_reply = await self.reply_one_message(message) response_set = do_reply if do_reply else None # 输出性能计时结果 if do_reply and response_set: # 确保 response_set 不是 None timing_str = " | ".join([f"{step}: {duration:.2f}秒" for step, duration in timing_results.items()]) trigger_msg = message.processed_plain_text response_msg = " ".join([item[1] for item in response_set if item[0] == "text"]) logger.info( f"[{self.stream_name}]回复消息: {trigger_msg[:30]}... | 回复内容: {response_msg[:30]}... | 计时: {timing_str}" ) await willing_manager.after_generate_reply_handle(message.message_info.message_id) elif not do_reply: # 不回复处理 await willing_manager.not_reply_handle(message.message_info.message_id) # 意愿管理器:注销当前message信息 (无论是否回复,只要处理过就删除) willing_manager.delete(message.message_info.message_id) async def _generate_normal_response( self, message: MessageRecv, available_actions: Optional[list] ) -> Optional[list]: """生成普通回复""" try: person_info_manager = get_person_info_manager() person_id = person_info_manager.get_person_id( message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id ) person_name = await person_info_manager.get_value(person_id, "person_name") reply_to_str = f"{person_name}:{message.processed_plain_text}" success, reply_set = await generator_api.generate_reply( chat_stream=message.chat_stream, reply_to=reply_to_str, available_actions=available_actions, enable_tool=global_config.tool.enable_in_normal_chat, request_type="normal.replyer", ) if not success or not reply_set: logger.info(f"对 {message.processed_plain_text} 的回复生成失败") return None return reply_set except Exception as e: logger.error(f"[{self.stream_name}] 回复生成出现错误:{str(e)} {traceback.format_exc()}") return None async def _plan_and_execute_actions(self, message: MessageRecv, thinking_id: str) -> Optional[dict]: """规划和执行额外动作""" no_action = { "action_result": { "action_type": "no_action", "action_data": {}, "reasoning": "规划器初始化默认", "is_parallel": True, }, "chat_context": "", "action_prompt": "", } if not self.enable_planner: logger.debug(f"[{self.stream_name}] Planner未启用,跳过动作规划") return no_action try: # 检查是否应该跳过规划 if self.action_modifier.should_skip_planning(): logger.debug(f"[{self.stream_name}] 没有可用动作,跳过规划") self.action_type = "no_action" return no_action # 执行规划 plan_result = await self.planner.plan() action_type = plan_result["action_result"]["action_type"] action_data = plan_result["action_result"]["action_data"] reasoning = plan_result["action_result"]["reasoning"] is_parallel = plan_result["action_result"].get("is_parallel", False) if action_type == "no_action": logger.info(f"[{self.stream_name}] {global_config.bot.nickname} 决定进行回复") elif is_parallel: logger.info( f"[{self.stream_name}] {global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作" ) else: logger.info(f"[{self.stream_name}] {global_config.bot.nickname} 决定执行{action_type}动作") self.action_type = action_type # 更新实例属性 self.is_parallel_action = is_parallel # 新增:保存并行执行标志 # 如果规划器决定不执行任何动作 if action_type == "no_action": logger.debug(f"[{self.stream_name}] Planner决定不执行任何额外动作") return no_action # 执行额外的动作(不影响回复生成) action_result = await self._execute_action(action_type, action_data, message, thinking_id) if action_result is not None: logger.info(f"[{self.stream_name}] 额外动作 {action_type} 执行完成") else: logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败") return { "action_type": action_type, "action_data": action_data, "reasoning": reasoning, "is_parallel": is_parallel, } except Exception as e: logger.error(f"[{self.stream_name}] Planner执行失败: {e}") return no_action async def reply_one_message(self, message: MessageRecv) -> None: # 回复前处理 await self.relationship_builder.build_relation() thinking_id = await self._create_thinking_message(message) # 如果启用planner,预先修改可用actions(避免在并行任务中重复调用) available_actions = None if self.enable_planner: try: await self.action_modifier.modify_actions(mode="normal", message_content=message.processed_plain_text) available_actions = self.action_manager.get_using_actions_for_mode("normal") except Exception as e: logger.warning(f"[{self.stream_name}] 获取available_actions失败: {e}") available_actions = None # 并行执行回复生成和动作规划 self.action_type = None # 初始化动作类型 self.is_parallel_action = False # 初始化并行动作标志 gen_task = asyncio.create_task(self._generate_normal_response(message, available_actions)) plan_task = asyncio.create_task(self._plan_and_execute_actions(message, thinking_id)) try: gather_timeout = global_config.chat.thinking_timeout results = await asyncio.wait_for( asyncio.gather(gen_task, plan_task, return_exceptions=True), timeout=gather_timeout, ) response_set, plan_result = results except asyncio.TimeoutError: gen_timed_out = not gen_task.done() plan_timed_out = not plan_task.done() timeout_details = [] if gen_timed_out: timeout_details.append("回复生成(gen)") if plan_timed_out: timeout_details.append("动作规划(plan)") timeout_source = " 和 ".join(timeout_details) logger.warning( f"[{self.stream_name}] {timeout_source} 任务超时 ({global_config.chat.thinking_timeout}秒),正在取消相关任务..." ) # print(f"111{self.timeout_count}") self.timeout_count += 1 if self.timeout_count > 5: logger.warning( f"[{self.stream_name}] 连续回复超时次数过多,{global_config.chat.thinking_timeout}秒 内大模型没有返回有效内容,请检查你的api是否速度过慢或配置错误。建议不要使用推理模型,推理模型生成速度过慢。或者尝试拉高thinking_timeout参数,这可能导致回复时间过长。" ) # 取消未完成的任务 if not gen_task.done(): gen_task.cancel() if not plan_task.done(): plan_task.cancel() # 清理思考消息 await self._cleanup_thinking_message_by_id(thinking_id) response_set = None plan_result = None # 处理生成回复的结果 if isinstance(response_set, Exception): logger.error(f"[{self.stream_name}] 回复生成异常: {response_set}") response_set = None # 处理规划结果(可选,不影响回复) if isinstance(plan_result, Exception): logger.error(f"[{self.stream_name}] 动作规划异常: {plan_result}") elif plan_result: logger.debug(f"[{self.stream_name}] 额外动作处理完成: {self.action_type}") if response_set: content = " ".join([item[1] for item in response_set if item[0] == "text"]) if not response_set or ( self.enable_planner and self.action_type not in ["no_action"] and not self.is_parallel_action ): if not response_set: logger.warning(f"[{self.stream_name}] 模型未生成回复内容") elif self.enable_planner and self.action_type not in ["no_action"] and not self.is_parallel_action: logger.info( f"[{self.stream_name}] {global_config.bot.nickname} 原本想要回复:{content},但选择执行{self.action_type},不发表回复" ) # 如果模型未生成回复,移除思考消息 await self._cleanup_thinking_message_by_id(thinking_id) return False logger.info(f"[{self.stream_name}] {global_config.bot.nickname} 决定的回复内容: {content}") if self._disabled: logger.info(f"[{self.stream_name}] 已停用,忽略 normal_response。") return False # 提取回复文本 reply_texts = [item[1] for item in response_set if item[0] == "text"] if not reply_texts: logger.info(f"[{self.stream_name}] 回复内容中没有文本,不发送消息") await self._cleanup_thinking_message_by_id(thinking_id) return False # 发送回复 (不再需要传入 chat) first_bot_msg = await self._add_messages_to_manager(message, reply_texts, thinking_id) # 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况) if first_bot_msg: # 消息段已在接收消息时更新,这里不需要额外处理 # 记录回复信息到最近回复列表中 reply_info = { "time": time.time(), "user_message": message.processed_plain_text, "user_info": { "user_id": message.message_info.user_info.user_id, "user_nickname": message.message_info.user_info.user_nickname, }, "response": response_set, "is_reference_reply": message.reply is not None, # 判断是否为引用回复 } self.recent_replies.append(reply_info) # 保持最近回复历史在限定数量内 if len(self.recent_replies) > self.max_replies_history: self.recent_replies = self.recent_replies[-self.max_replies_history :] return response_set if response_set else False # 改为实例方法, 移除 chat 参数 async def start_chat(self): """启动聊天任务。""" logger.debug(f"[{self.stream_name}] 开始启动聊天任务") # 重置停用标志 self._disabled = False # 检查是否已有运行中的任务 if self._chat_task and not self._chat_task.done(): logger.info(f"[{self.stream_name}] 聊天轮询任务已在运行中。") return # 清理可能存在的已完成任务引用 if self._chat_task and self._chat_task.done(): self._chat_task = None try: logger.info(f"[{self.stream_name}] 创建新的聊天轮询任务,模式: {self.reply_mode}") if self.reply_mode == "priority": polling_task_send = asyncio.create_task(self._priority_chat_loop()) polling_task_recv = asyncio.create_task(self._priority_chat_loop_add_message()) print("555") polling_task = asyncio.gather(polling_task_send, polling_task_recv) print("666") else: # 默认或 "interest" 模式 polling_task = asyncio.create_task(self._reply_interested_message()) # 设置回调 polling_task.add_done_callback(lambda t: self._handle_task_completion(t)) # 保存任务引用 self._chat_task = polling_task logger.debug(f"[{self.stream_name}] 聊天任务启动完成") except Exception as e: logger.error(f"[{self.stream_name}] 启动聊天任务失败: {e}") self._chat_task = None raise def _handle_task_completion(self, task: asyncio.Task): """任务完成回调处理""" try: # 简化回调逻辑,避免复杂的异常处理 logger.debug(f"[{self.stream_name}] 任务完成回调被调用") # 检查是否是我们管理的任务 if task is not self._chat_task: # 如果已经不是当前任务(可能在stop_chat中已被清空),直接返回 logger.debug(f"[{self.stream_name}] 回调的任务不是当前管理的任务") return # 清理任务引用 self._chat_task = None logger.debug(f"[{self.stream_name}] 任务引用已清理") # 简单记录任务状态,不进行复杂处理 if task.cancelled(): logger.debug(f"[{self.stream_name}] 任务已取消") elif task.done(): try: # 尝试获取异常,但不抛出 exc = task.exception() if exc: logger.error(f"[{self.stream_name}] 任务异常: {type(exc).__name__}: {exc}", exc_info=exc) else: logger.debug(f"[{self.stream_name}] 任务正常完成") except Exception as e: # 获取异常时也可能出错,静默处理 logger.debug(f"[{self.stream_name}] 获取任务异常时出错: {e}") except Exception as e: # 回调函数中的任何异常都要捕获,避免影响系统 logger.error(f"[{self.stream_name}] 任务完成回调处理出错: {e}") # 确保任务引用被清理 self._chat_task = None # 改为实例方法, 移除 stream_id 参数 async def stop_chat(self): """停止当前实例的兴趣监控任务。""" logger.debug(f"[{self.stream_name}] 开始停止聊天任务") # 立即设置停用标志,防止新任务启动 self._disabled = True # 如果没有运行中的任务,直接返回 if not self._chat_task or self._chat_task.done(): logger.debug(f"[{self.stream_name}] 没有运行中的任务,直接完成停止") self._chat_task = None return # 保存任务引用并立即清空,避免回调中的循环引用 task_to_cancel = self._chat_task self._chat_task = None logger.debug(f"[{self.stream_name}] 取消聊天任务") # 尝试优雅取消任务 task_to_cancel.cancel() # 异步清理思考消息,不阻塞当前流程 asyncio.create_task(self._cleanup_thinking_messages_async()) async def _cleanup_thinking_messages_async(self): """异步清理思考消息,避免阻塞主流程""" try: # 添加短暂延迟,让任务有时间响应取消 await asyncio.sleep(0.1) container = await message_manager.get_container(self.stream_id) if container: # 查找并移除所有 MessageThinking 类型的消息 thinking_messages = [msg for msg in container.messages[:] if isinstance(msg, MessageThinking)] if thinking_messages: for msg in thinking_messages: container.messages.remove(msg) logger.info(f"[{self.stream_name}] 清理了 {len(thinking_messages)} 条未处理的思考消息。") except Exception as e: logger.error(f"[{self.stream_name}] 异步清理思考消息时出错: {e}") # 不打印完整栈跟踪,避免日志污染 def adjust_reply_frequency(self): """ 根据预设规则动态调整回复意愿(willing_amplifier)。 - 评估周期:10分钟 - 目标频率:由 global_config.chat.talk_frequency 定义(例如 1条/分钟) - 调整逻辑: - 0条回复 -> 5.0x 意愿 - 达到目标回复数 -> 1.0x 意愿(基准) - 达到目标2倍回复数 -> 0.2x 意愿 - 中间值线性变化 - 增益抑制:如果最近5分钟回复过快,则不增加意愿。 """ # --- 1. 定义参数 --- evaluation_minutes = 10.0 target_replies_per_min = global_config.chat.get_current_talk_frequency( self.stream_id ) # 目标频率:e.g. 1条/分钟 target_replies_in_window = target_replies_per_min * evaluation_minutes # 10分钟内的目标回复数 if target_replies_in_window <= 0: logger.debug(f"[{self.stream_name}] 目标回复频率为0或负数,不调整意愿放大器。") return # --- 2. 获取近期统计数据 --- stats_10_min = get_recent_message_stats(minutes=evaluation_minutes, chat_id=self.stream_id) bot_reply_count_10_min = stats_10_min["bot_reply_count"] # --- 3. 计算新的意愿放大器 (willing_amplifier) --- # 基于回复数在 [0, target*2] 区间内进行分段线性映射 if bot_reply_count_10_min <= target_replies_in_window: # 在 [0, 目标数] 区间,意愿从 5.0 线性下降到 1.0 new_amplifier = 5.0 + (bot_reply_count_10_min - 0) * (1.0 - 5.0) / (target_replies_in_window - 0) elif bot_reply_count_10_min <= target_replies_in_window * 2: # 在 [目标数, 目标数*2] 区间,意愿从 1.0 线性下降到 0.2 over_target_cap = target_replies_in_window * 2 new_amplifier = 1.0 + (bot_reply_count_10_min - target_replies_in_window) * (0.2 - 1.0) / ( over_target_cap - target_replies_in_window ) else: # 超过目标数2倍,直接设为最小值 new_amplifier = 0.2 # --- 4. 检查是否需要抑制增益 --- # "如果邻近5分钟内,回复数量 > 频率/2,就不再进行增益" suppress_gain = False if new_amplifier > self.willing_amplifier: # 仅在计算结果为增益时检查 suppression_minutes = 5.0 # 5分钟内目标回复数的一半 suppression_threshold = (target_replies_per_min / 2) * suppression_minutes # e.g., (1/2)*5 = 2.5 stats_5_min = get_recent_message_stats(minutes=suppression_minutes, chat_id=self.stream_id) bot_reply_count_5_min = stats_5_min["bot_reply_count"] if bot_reply_count_5_min > suppression_threshold: suppress_gain = True # --- 5. 更新意愿放大器 --- if suppress_gain: logger.debug( f"[{self.stream_name}] 回复增益被抑制。最近5分钟内回复数 ({bot_reply_count_5_min}) " f"> 阈值 ({suppression_threshold:.1f})。意愿放大器保持在 {self.willing_amplifier:.2f}" ) # 不做任何改动 else: # 限制最终值在 [0.2, 5.0] 范围内 self.willing_amplifier = max(0.2, min(5.0, new_amplifier)) logger.debug( f"[{self.stream_name}] 调整回复意愿。10分钟内回复: {bot_reply_count_10_min} (目标: {target_replies_in_window:.0f}) -> " f"意愿放大器更新为: {self.willing_amplifier:.2f}" ) async def _execute_action( self, action_type: str, action_data: dict, message: MessageRecv, thinking_id: str ) -> Optional[bool]: """执行具体的动作,只返回执行成功与否""" try: # 创建动作处理器实例 action_handler = self.action_manager.create_action( action_name=action_type, action_data=action_data, reasoning=action_data.get("reasoning", ""), cycle_timers={}, # normal_chat使用空的cycle_timers thinking_id=thinking_id, chat_stream=self.chat_stream, log_prefix=self.stream_name, shutting_down=self._disabled, ) if action_handler: # 执行动作 result = await action_handler.handle_action() success = False if result and isinstance(result, tuple) and len(result) >= 2: # handle_action返回 (success: bool, message: str) success = result[0] elif result: # 如果返回了其他结果,假设成功 success = True return success except Exception as e: logger.error(f"[{self.stream_name}] 执行动作 {action_type} 失败: {e}") return False def get_action_manager(self) -> ActionManager: """获取动作管理器实例""" return self.action_manager def _get_fatigue_reply_multiplier(self) -> float: """获取疲劳期回复频率调整系数 Returns: float: 回复频率调整系数,范围0.5-1.0 """ if not self.get_cooldown_progress_callback: return 1.0 # 没有冷却进度回调,返回正常系数 try: cooldown_progress = self.get_cooldown_progress_callback() if cooldown_progress >= 1.0: return 1.0 # 冷却完成,正常回复频率 # 疲劳期间:从0.5逐渐恢复到1.0 # progress=0时系数为0.5,progress=1时系数为1.0 multiplier = 0.2 + (0.8 * cooldown_progress) return multiplier except Exception as e: logger.warning(f"[{self.stream_name}] 获取疲劳调整系数时出错: {e}") return 1.0 # 出错时返回正常系数 async def _check_should_switch_to_focus(self) -> bool: """ 检查是否满足切换到focus模式的条件 Returns: bool: 是否应该切换到focus模式 """ # 检查思考消息堆积情况 container = await message_manager.get_container(self.stream_id) if container: thinking_count = sum(1 for msg in container.messages if isinstance(msg, MessageThinking)) if thinking_count >= 4 * global_config.chat.auto_focus_threshold: # 如果堆积超过阈值条思考消息 logger.debug(f"[{self.stream_name}] 检测到思考消息堆积({thinking_count}条),切换到focus模式") return True if not self.recent_replies: return False current_time = time.time() time_threshold = 120 / global_config.chat.auto_focus_threshold reply_threshold = 6 * global_config.chat.auto_focus_threshold one_minute_ago = current_time - time_threshold # 统计指定时间内的回复数量 recent_reply_count = sum(1 for reply in self.recent_replies if reply["time"] > one_minute_ago) should_switch = recent_reply_count > reply_threshold if should_switch: logger.debug( f"[{self.stream_name}] 检测到{time_threshold:.0f}秒内回复数量({recent_reply_count})大于{reply_threshold},满足切换到focus模式条件" ) return should_switch async def _cleanup_thinking_message_by_id(self, thinking_id: str): """根据ID清理思考消息""" try: container = await message_manager.get_container(self.stream_id) if container: for msg in container.messages[:]: if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id: container.messages.remove(msg) logger.info(f"[{self.stream_name}] 已清理思考消息 {thinking_id}") break except Exception as e: logger.error(f"[{self.stream_name}] 清理思考消息 {thinking_id} 时出错: {e}") def get_recent_message_stats(minutes: int = 30, chat_id: str = None) -> dict: """ Args: minutes (int): 检索的分钟数,默认30分钟 chat_id (str, optional): 指定的chat_id,仅统计该chat下的消息。为None时统计全部。 Returns: dict: {"bot_reply_count": int, "total_message_count": int} """ now = time.time() start_time = now - minutes * 60 bot_id = global_config.bot.qq_account filter_base = {"time": {"$gte": start_time}} if chat_id is not None: filter_base["chat_id"] = chat_id # 总消息数 total_message_count = count_messages(filter_base) # bot自身回复数 bot_filter = filter_base.copy() bot_filter["user_id"] = bot_id bot_reply_count = count_messages(bot_filter) return {"bot_reply_count": bot_reply_count, "total_message_count": total_message_count}