import json # <--- 确保导入 json import traceback from typing import List, Dict, Any, Optional from rich.traceback import install from src.llm_models.utils_model import LLMRequest from src.config.config import global_config from src.chat.focus_chat.info.info_base import InfoBase from src.chat.focus_chat.info.obs_info import ObsInfo from src.chat.focus_chat.info.action_info import ActionInfo from src.common.logger import get_logger from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.chat.planner_actions.action_manager import ActionManager from json_repair import repair_json from src.chat.utils.utils import get_chat_type_and_target_info from datetime import datetime logger = get_logger("planner") install(extra_lines=3) def init_prompt(): Prompt( """ {time_block} {indentify_block} 你现在需要根据聊天内容,选择的合适的action来参与聊天。 {chat_context_description},以下是具体的聊天内容: {chat_content_block} {moderation_prompt} 现在请你根据聊天内容选择合适的action: {action_options_text} 请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容: """, "simple_planner_prompt", ) Prompt( """ {time_block} {indentify_block} 你现在需要根据聊天内容,选择的合适的action来参与聊天。 {chat_context_description},以下是具体的聊天内容: {chat_content_block} {moderation_prompt} 现在请你选择合适的action: {action_options_text} 请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容: """, "simple_planner_prompt_private", ) Prompt( """ 动作:{action_name} 动作描述:{action_description} {action_require} {{ "action": "{action_name}",{action_parameters} }} """, "action_prompt", ) class ActionPlanner: def __init__(self, log_prefix: str, action_manager: ActionManager): self.log_prefix = log_prefix self.action_manager = action_manager # LLM规划器配置 self.planner_llm = LLMRequest( model=global_config.model.planner, request_type="focus.planner", # 用于动作规划 ) self.utils_llm = LLMRequest( model=global_config.model.utils_small, request_type="focus.planner", # 用于动作规划 ) async def plan( self, all_plan_info: List[InfoBase],loop_start_time: float ) -> Dict[str, Any]: """ 规划器 (Planner): 使用LLM根据上下文决定做出什么动作。 参数: all_plan_info: 所有计划信息 running_memorys: 回忆信息 loop_start_time: 循环开始时间 """ action = "no_reply" # 默认动作 reasoning = "规划器初始化默认" action_data = {} try: # 获取观察信息 extra_info: list[str] = [] extra_info = [] observed_messages = [] observed_messages_str = "" chat_type = "group" is_group_chat = True chat_id = None # 添加chat_id变量 for info in all_plan_info: if isinstance(info, ObsInfo): observed_messages = info.get_talking_message() observed_messages_str = info.get_talking_message_str_truncate_short() chat_type = info.get_chat_type() is_group_chat = chat_type == "group" # 从ObsInfo中获取chat_id chat_id = info.get_chat_id() else: extra_info.append(info.get_processed_info()) # 获取聊天类型和目标信息 chat_target_info = None if chat_id: try: # 重新获取更准确的聊天信息 is_group_chat_updated, chat_target_info = get_chat_type_and_target_info(chat_id) # 如果获取成功,更新is_group_chat if is_group_chat_updated is not None: is_group_chat = is_group_chat_updated logger.debug( f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}" ) except Exception as e: logger.warning(f"{self.log_prefix}获取聊天目标信息失败: {e}") chat_target_info = None # 获取经过modify_actions处理后的最终可用动作集 # 注意:动作的激活判定现在在主循环的modify_actions中完成 # 使用Focus模式过滤动作 current_available_actions_dict = self.action_manager.get_using_actions_for_mode("focus") # 获取完整的动作信息 all_registered_actions = self.action_manager.get_registered_actions() current_available_actions = {} for action_name in current_available_actions_dict.keys(): if action_name in all_registered_actions: current_available_actions[action_name] = all_registered_actions[action_name] else: logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到") # 如果没有可用动作或只有no_reply动作,直接返回no_reply if not current_available_actions or ( len(current_available_actions) == 1 and "no_reply" in current_available_actions ): action = "no_reply" reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用,跳过规划" logger.info(f"{self.log_prefix}{reasoning}") self.action_manager.restore_actions() logger.debug( f"{self.log_prefix}[focus]沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}" ) return { "action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning}, "observed_messages": observed_messages, } # --- 构建提示词 (调用修改后的 PromptBuilder 方法) --- prompt = await self.build_planner_prompt( is_group_chat=is_group_chat, # <-- Pass HFC state chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息 observed_messages_str=observed_messages_str, # <-- Pass local variable current_available_actions=current_available_actions, # <-- Pass determined actions ) # --- 调用 LLM (普通文本生成) --- llm_content = None try: prompt = f"{prompt}" llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt) logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}") logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}") if reasoning_content: logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") except Exception as req_e: logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}") reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}" action = "no_reply" if llm_content: try: fixed_json_string = repair_json(llm_content) if isinstance(fixed_json_string, str): try: parsed_json = json.loads(fixed_json_string) except json.JSONDecodeError as decode_error: logger.error(f"JSON解析错误: {str(decode_error)}") parsed_json = {} else: # 如果repair_json直接返回了字典对象,直接使用 parsed_json = fixed_json_string # 处理repair_json可能返回列表的情况 if isinstance(parsed_json, list): if parsed_json: # 取列表中最后一个元素(通常是最完整的) parsed_json = parsed_json[-1] logger.warning(f"{self.log_prefix}LLM返回了多个JSON对象,使用最后一个: {parsed_json}") else: parsed_json = {} # 确保parsed_json是字典 if not isinstance(parsed_json, dict): logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}") parsed_json = {} # 提取决策,提供默认值 extracted_action = parsed_json.get("action", "no_reply") extracted_reasoning = "" # 将所有其他属性添加到action_data action_data = {} for key, value in parsed_json.items(): if key not in ["action", "reasoning"]: action_data[key] = value action_data["loop_start_time"] = loop_start_time # 对于reply动作不需要额外处理,因为相关字段已经在上面的循环中添加到action_data if extracted_action not in current_available_actions: logger.warning( f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'" ) action = "no_reply" reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}" else: # 动作有效且可用 action = extracted_action reasoning = extracted_reasoning except Exception as json_e: logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'") traceback.print_exc() reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'." action = "no_reply" except Exception as outer_e: logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}") traceback.print_exc() action = "no_reply" reasoning = f"Planner 内部处理错误: {outer_e}" # 恢复到默认动作集 self.action_manager.restore_actions() logger.debug( f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}" ) action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning} plan_result = { "action_result": action_result, "observed_messages": observed_messages, "action_prompt": prompt, } return plan_result async def build_planner_prompt( self, is_group_chat: bool, # Now passed as argument chat_target_info: Optional[dict], # Now passed as argument observed_messages_str: str, current_available_actions: Dict[str, ActionInfo], ) -> str: """构建 Planner LLM 的提示词 (获取模板并填充数据)""" try: chat_context_description = "你现在正在一个群聊中" chat_target_name = None # Only relevant for private if not is_group_chat and chat_target_info: chat_target_name = ( chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方" ) chat_context_description = f"你正在和 {chat_target_name} 私聊" chat_content_block = "" if observed_messages_str: chat_content_block = f"\n{observed_messages_str}" else: chat_content_block = "你还未开始聊天" action_options_block = "" # 根据聊天类型选择不同的动作prompt模板 action_template_name = "action_prompt_private" if not is_group_chat else "action_prompt" for using_actions_name, using_actions_info in current_available_actions.items(): using_action_prompt = await global_prompt_manager.get_prompt_async(action_template_name) if using_actions_info["parameters"]: param_text = "\n" for param_name, param_description in using_actions_info["parameters"].items(): param_text += f' "{param_name}":"{param_description}"\n' param_text = param_text.rstrip("\n") else: param_text = "" require_text = "" for require_item in using_actions_info["require"]: require_text += f"- {require_item}\n" require_text = require_text.rstrip("\n") # 根据模板类型决定是否包含description参数 if action_template_name == "action_prompt_private": # 私聊模板不包含description参数 using_action_prompt = using_action_prompt.format( action_name=using_actions_name, action_parameters=param_text, action_require=require_text, ) else: # 群聊模板包含description参数 using_action_prompt = using_action_prompt.format( action_name=using_actions_name, action_description=using_actions_info["description"], action_parameters=param_text, action_require=require_text, ) action_options_block += using_action_prompt # moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。" moderation_prompt_block = "" # 获取当前时间 time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" bot_name = global_config.bot.nickname if global_config.bot.alias_names: bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" else: bot_nickname = "" bot_core_personality = global_config.personality.personality_core indentify_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}:" # 根据聊天类型选择不同的prompt模板 template_name = "simple_planner_prompt_private" if not is_group_chat else "simple_planner_prompt" planner_prompt_template = await global_prompt_manager.get_prompt_async(template_name) prompt = planner_prompt_template.format( time_block=time_block, chat_context_description=chat_context_description, chat_content_block=chat_content_block, action_options_text=action_options_block, moderation_prompt=moderation_prompt_block, indentify_block=indentify_block, ) return prompt except Exception as e: logger.error(f"构建 Planner 提示词时出错: {e}") logger.error(traceback.format_exc()) return "构建 Planner Prompt 时出错" init_prompt()