from src.llm_models.utils_model import LLMRequest from src.config.config import model_config from src.common.database.database_model import MemoryChest as MemoryChestModel from src.common.logger import get_logger from src.config.config import global_config from src.plugin_system.apis.message_api import build_readable_messages import time from src.plugin_system.apis.message_api import get_raw_msg_by_timestamp_with_chat logger = get_logger("memory_chest") class MemoryChest: def __init__(self): self.LLMRequest = LLMRequest( model_set=model_config.model_task_config.utils_small, request_type="memory_chest", ) self.memory_build_threshold = 20 self.memory_size_limit = 300 self.running_content_list = {} # {chat_id: {"content": running_content, "last_update_time": timestamp}} self.fetched_memory_list = [] # [(chat_id, (question, answer, timestamp)), ...] async def build_running_content(self, chat_id: str = None) -> str: """ 构建记忆仓库的运行内容 Args: message_str: 消息内容 chat_id: 聊天ID,用于提取对应的运行内容 Returns: str: 构建后的运行内容 """ # 检查是否需要更新:上次更新时间和现在时间的消息数量大于30 if chat_id not in self.running_content_list: self.running_content_list[chat_id] = { "content": "", "last_update_time": time.time() } should_update = True if chat_id and chat_id in self.running_content_list: last_update_time = self.running_content_list[chat_id]["last_update_time"] current_time = time.time() # 使用message_api获取消息数量 message_list = get_raw_msg_by_timestamp_with_chat( timestamp_start=last_update_time, timestamp_end=current_time, chat_id=chat_id, limit=global_config.chat.max_context_size * 2, ) new_messages_count = len(message_list) should_update = new_messages_count > self.memory_build_threshold logger.info(f"chat_id {chat_id} 自上次更新后有 {new_messages_count} 条新消息,{'需要' if should_update else '不需要'}更新") if should_update: # 如果有chat_id,先提取对应的running_content message_str = build_readable_messages( message_list, replace_bot_name=True, timestamp_mode="relative", read_mark=0.0, show_actions=True, ) current_running_content = "" if chat_id and chat_id in self.running_content_list: current_running_content = self.running_content_list[chat_id]["content"] prompt = f""" 以下是你的记忆内容: {current_running_content} 请将下面的新聊天记录内的有用的信息,添加到你的记忆中 请主要关注概念和知识,而不是聊天的琐事 记忆为一段纯文本,逻辑清晰,指出事件,概念的含义,并说明关系 请输出添加后的记忆内容,不要输出其他内容: {message_str} """ if global_config.debug.show_prompt: logger.info(f"记忆仓库构建运行内容 prompt: {prompt}") else: logger.debug(f"记忆仓库构建运行内容 prompt: {prompt}") running_content, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt) print(f"记忆仓库构建运行内容: {running_content}") # 如果有chat_id,更新对应的running_content if chat_id and running_content: self.running_content_list[chat_id] = { "content": running_content, "last_update_time": time.time() } # 检查running_content长度是否大于500 if len(running_content) > self.memory_size_limit: await self._save_to_database_and_clear(chat_id, running_content) return running_content def get_all_titles(self) -> list[str]: """ 获取记忆仓库中的所有标题 Returns: list: 包含所有标题的列表 """ try: # 查询所有记忆记录的标题 titles = [] for memory in MemoryChestModel.select(): if memory.title: titles.append(memory.title) return titles except Exception as e: print(f"获取记忆标题时出错: {e}") return [] async def get_answer_by_question(self, chat_id: str = "", question: str = "") -> str: """ 根据问题获取答案 """ title = await self.select_title_by_question(question) if not title: return "" for memory in MemoryChestModel.select(): if memory.title == title: content = memory.content prompt = f""" {content} 请根据问题:{question} 在上方内容中,提取相关信息的原文并输出,请务必提取上面原文,不要输出其他内容: """ if global_config.debug.show_prompt: logger.info(f"记忆仓库获取答案 prompt: {prompt}") else: logger.debug(f"记忆仓库获取答案 prompt: {prompt}") answer, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt) logger.info(f"记忆仓库获取答案: {answer}") # 将问题和答案存到fetched_memory_list if chat_id and answer: self.fetched_memory_list.append((chat_id, (question, answer, time.time()))) # 清理fetched_memory_list self._cleanup_fetched_memory_list() return answer def get_chat_memories_as_string(self, chat_id: str) -> str: """ 获取某个chat_id的所有记忆,并构建成字符串 Args: chat_id: 聊天ID Returns: str: 格式化的记忆字符串,格式:问题:xxx,答案:xxxxx\n问题:xxx,答案:xxxxx\n... """ try: memories = [] # 从fetched_memory_list中获取该chat_id的所有记忆 for cid, (question, answer, timestamp) in self.fetched_memory_list: if cid == chat_id: memories.append(f"问题:{question},答案:{answer}") # 按时间戳排序(最新的在后面) memories.sort() # 用换行符连接所有记忆 result = "\n".join(memories) logger.info(f"chat_id {chat_id} 共有 {len(memories)} 条记忆") return result except Exception as e: logger.error(f"获取chat_id {chat_id} 的记忆时出错: {e}") return "" async def select_title_by_question(self, question: str) -> str: """ 根据消息内容选择最匹配的标题 Args: question: 问题 Returns: str: 选择的标题 """ # 获取所有标题并构建格式化字符串 titles = self.get_all_titles() formatted_titles = "" for title in titles: formatted_titles += f"{title}\n" prompt = f""" 所有主题: {formatted_titles} 请根据以下问题,选择一个能够回答问题的主题: 问题:{question} 请你输出主题,不要输出其他内容,完整输出主题名: """ if global_config.debug.show_prompt: logger.info(f"记忆仓库选择标题 prompt: {prompt}") else: logger.debug(f"记忆仓库选择标题 prompt: {prompt}") title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt) # 根据 title 获取 titles 里的对应项 titles = self.get_all_titles() selected_title = None # 查找完全匹配的标题 for t in titles: if t == title: selected_title = t break logger.info(f"记忆仓库选择标题: {selected_title}") return selected_title def _cleanup_fetched_memory_list(self): """ 清理fetched_memory_list,移除超过10分钟的记忆和超过10条的最旧记忆 """ try: current_time = time.time() ten_minutes_ago = current_time - 600 # 10分钟 = 600秒 # 移除超过10分钟的记忆 self.fetched_memory_list = [ (chat_id, (question, answer, timestamp)) for chat_id, (question, answer, timestamp) in self.fetched_memory_list if timestamp > ten_minutes_ago ] # 如果记忆条数超过10条,移除最旧的5条 if len(self.fetched_memory_list) > 10: # 按时间戳排序,移除最旧的5条 self.fetched_memory_list.sort(key=lambda x: x[1][2]) # 按timestamp排序 self.fetched_memory_list = self.fetched_memory_list[5:] # 保留最新的5条 logger.debug(f"fetched_memory_list清理后,当前有 {len(self.fetched_memory_list)} 条记忆") except Exception as e: logger.error(f"清理fetched_memory_list时出错: {e}") async def _save_to_database_and_clear(self, chat_id: str, content: str): """ 生成标题,保存到数据库,并清空对应chat_id的running_content Args: chat_id: 聊天ID content: 要保存的内容 """ try: # 生成标题 title_prompt = f""" 请为以下内容生成一个描述全面的标题,要求描述内容的主要概念和事件: {content} 请只输出标题,不要输出其他内容: """ if global_config.debug.show_prompt: logger.info(f"记忆仓库生成标题 prompt: {title_prompt}") else: logger.debug(f"记忆仓库生成标题 prompt: {title_prompt}") title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(title_prompt) if title: # 保存到数据库 MemoryChestModel.create( title=title.strip(), content=content ) logger.info(f"已保存记忆仓库内容,标题: {title.strip()}, chat_id: {chat_id}") # 清空对应chat_id的running_content if chat_id in self.running_content_list: del self.running_content_list[chat_id] logger.info(f"已清空chat_id {chat_id} 的running_content") else: logger.warning(f"生成标题失败,chat_id: {chat_id}") except Exception as e: logger.error(f"保存记忆仓库内容时出错: {e}") global_memory_chest = MemoryChest()