import time import math import asyncio import threading import json # 引入 json import os # 引入 os import traceback # <--- 添加导入 from typing import Optional # <--- 添加导入 import random # <--- 添加导入 random from src.common.logger import get_module_logger, LogConfig, DEFAULT_CONFIG # 引入 DEFAULT_CONFIG from src.plugins.chat.chat_stream import chat_manager # *** Import ChatManager *** from ...chat.message import MessageRecv # 导入 MessageRecv # 定义日志配置 (使用 loguru 格式) interest_log_config = LogConfig( console_format=DEFAULT_CONFIG["console_format"], # 使用默认控制台格式 file_format=DEFAULT_CONFIG["file_format"] # 使用默认文件格式 ) logger = get_module_logger("InterestManager", config=interest_log_config) # 定义常量 DEFAULT_DECAY_RATE_PER_SECOND = 0.98 # 每秒衰减率 (兴趣保留 99%) MAX_INTEREST = 15.0 # 最大兴趣值 # MIN_INTEREST_THRESHOLD = 0.1 # 低于此值可能被清理 (可选) CLEANUP_INTERVAL_SECONDS = 3600 # 清理任务运行间隔 (例如:1小时) INACTIVE_THRESHOLD_SECONDS = 3600 # 不活跃时间阈值 (例如:1小时) LOG_INTERVAL_SECONDS = 3 # 日志记录间隔 (例如:30秒) LOG_DIRECTORY = "logs/interest" # 日志目录 LOG_FILENAME = "interest_log.json" # 快照日志文件名 (保留,以防其他地方用到) HISTORY_LOG_FILENAME = "interest_history.log" # 新的历史日志文件名 # 移除阈值,将移至 HeartFC_Chat # INTEREST_INCREASE_THRESHOLD = 0.5 # --- 新增:概率回复相关常量 --- REPLY_TRIGGER_THRESHOLD = 3.0 # 触发概率回复的兴趣阈值 (示例值) BASE_REPLY_PROBABILITY = 0.05 # 首次超过阈值时的基础回复概率 (示例值) PROBABILITY_INCREASE_RATE_PER_SECOND = 0.02 # 高于阈值时,每秒概率增加量 (线性增长, 示例值) PROBABILITY_DECAY_FACTOR_PER_SECOND = 0.3 # 低于阈值时,每秒概率衰减因子 (指数衰减, 示例值) MAX_REPLY_PROBABILITY = 1 # 回复概率上限 (示例值) # --- 结束:概率回复相关常量 --- class InterestChatting: def __init__(self, decay_rate=DEFAULT_DECAY_RATE_PER_SECOND, max_interest=MAX_INTEREST, trigger_threshold=REPLY_TRIGGER_THRESHOLD, base_reply_probability=BASE_REPLY_PROBABILITY, increase_rate=PROBABILITY_INCREASE_RATE_PER_SECOND, decay_factor=PROBABILITY_DECAY_FACTOR_PER_SECOND, max_probability=MAX_REPLY_PROBABILITY): self.interest_level: float = 0.0 self.last_update_time: float = time.time() # 同时作为兴趣和概率的更新时间基准 self.decay_rate_per_second: float = decay_rate self.max_interest: float = max_interest self.last_increase_amount: float = 0.0 self.last_interaction_time: float = self.last_update_time # 新增:最后交互时间 # --- 新增:概率回复相关属性 --- self.trigger_threshold: float = trigger_threshold self.base_reply_probability: float = base_reply_probability self.probability_increase_rate: float = increase_rate self.probability_decay_factor: float = decay_factor self.max_reply_probability: float = max_probability self.current_reply_probability: float = 0.0 self.is_above_threshold: bool = False # 标记兴趣值是否高于阈值 # --- 结束:概率回复相关属性 --- def _calculate_decay(self, current_time: float): """计算从上次更新到现在的衰减""" time_delta = current_time - self.last_update_time if time_delta > 0: # 指数衰减: interest = interest * (decay_rate ^ time_delta) # 添加处理极小兴趣值避免 math domain error old_interest = self.interest_level if self.interest_level < 1e-9: self.interest_level = 0.0 else: # 检查 decay_rate_per_second 是否为非正数,避免 math domain error if self.decay_rate_per_second <= 0: logger.warning(f"InterestChatting encountered non-positive decay rate: {self.decay_rate_per_second}. Setting interest to 0.") self.interest_level = 0.0 # 检查 interest_level 是否为负数,虽然理论上不应发生,但以防万一 elif self.interest_level < 0: logger.warning(f"InterestChatting encountered negative interest level: {self.interest_level}. Setting interest to 0.") self.interest_level = 0.0 else: try: decay_factor = math.pow(self.decay_rate_per_second, time_delta) self.interest_level *= decay_factor except ValueError as e: # 捕获潜在的 math domain error,例如对负数开非整数次方(虽然已加保护) logger.error(f"Math error during decay calculation: {e}. Rate: {self.decay_rate_per_second}, Delta: {time_delta}, Level: {self.interest_level}. Setting interest to 0.") self.interest_level = 0.0 # 防止低于阈值 (如果需要) # self.interest_level = max(self.interest_level, MIN_INTEREST_THRESHOLD) # 只有在兴趣值发生变化时才更新时间戳 if old_interest != self.interest_level: self.last_update_time = current_time def _update_reply_probability(self, current_time: float): """根据当前兴趣是否超过阈值及时间差,更新回复概率""" time_delta = current_time - self.last_update_time if time_delta <= 0: return # 时间未前进,无需更新 currently_above = self.interest_level >= self.trigger_threshold if currently_above: if not self.is_above_threshold: # 刚跨过阈值,重置为基础概率 self.current_reply_probability = self.base_reply_probability logger.debug(f"兴趣跨过阈值 ({self.trigger_threshold}). 概率重置为基础值: {self.base_reply_probability:.4f}") else: # 持续高于阈值,线性增加概率 increase_amount = self.probability_increase_rate * time_delta self.current_reply_probability += increase_amount # logger.debug(f"兴趣高于阈值 ({self.trigger_threshold}) 持续 {time_delta:.2f}秒. 概率增加 {increase_amount:.4f} 到 {self.current_reply_probability:.4f}") # 限制概率不超过最大值 self.current_reply_probability = min(self.current_reply_probability, self.max_reply_probability) else: # 低于阈值 # if self.is_above_threshold: # # 刚低于阈值,开始衰减 # logger.debug(f"兴趣低于阈值 ({self.trigger_threshold}). 概率衰减开始于 {self.current_reply_probability:.4f}") # else: # 持续低于阈值,继续衰减 # pass # 不需要特殊处理 # 指数衰减概率 # 检查 decay_factor 是否有效 if 0 < self.probability_decay_factor < 1: decay_multiplier = math.pow(self.probability_decay_factor, time_delta) # old_prob = self.current_reply_probability self.current_reply_probability *= decay_multiplier # 避免因浮点数精度问题导致概率略微大于0,直接设为0 if self.current_reply_probability < 1e-6: self.current_reply_probability = 0.0 # logger.debug(f"兴趣低于阈值 ({self.trigger_threshold}) 持续 {time_delta:.2f}秒. 概率从 {old_prob:.4f} 衰减到 {self.current_reply_probability:.4f} (因子: {self.probability_decay_factor})") elif self.probability_decay_factor <= 0: # 如果衰减因子无效或为0,直接清零 if self.current_reply_probability > 0: logger.warning(f"无效的衰减因子 ({self.probability_decay_factor}). 设置概率为0.") self.current_reply_probability = 0.0 # else: decay_factor >= 1, probability will not decay or increase, which might be intended in some cases. # 确保概率不低于0 self.current_reply_probability = max(self.current_reply_probability, 0.0) # 更新状态标记 self.is_above_threshold = currently_above # 更新时间戳放在调用者处,确保 interest 和 probability 基于同一点更新 def increase_interest(self, current_time: float, value: float): """根据传入的值增加兴趣值,并记录增加量""" # 先更新概率和计算衰减(基于上次更新时间) self._update_reply_probability(current_time) self._calculate_decay(current_time) # 记录这次增加的具体数值,供外部判断是否触发 self.last_increase_amount = value # 应用增加 self.interest_level += value self.interest_level = min(self.interest_level, self.max_interest) # 不超过最大值 self.last_update_time = current_time # 更新时间戳 self.last_interaction_time = current_time # 更新最后交互时间 def decrease_interest(self, current_time: float, value: float): """降低兴趣值并更新时间 (确保不低于0)""" # 先更新概率(基于上次更新时间) self._update_reply_probability(current_time) # 注意:降低兴趣度是否需要先衰减?取决于具体逻辑,这里假设不衰减直接减 self.interest_level -= value self.interest_level = max(self.interest_level, 0.0) # 确保不低于0 self.last_update_time = current_time # 降低也更新时间戳 self.last_interaction_time = current_time # 更新最后交互时间 def reset_trigger_info(self): """重置触发相关信息,在外部任务处理后调用""" self.last_increase_amount = 0.0 def get_interest(self) -> float: """获取当前兴趣值 (计算衰减后)""" # 注意:这个方法现在会触发概率和兴趣的更新 current_time = time.time() self._update_reply_probability(current_time) self._calculate_decay(current_time) self.last_update_time = current_time # 更新时间戳 return self.interest_level def get_state(self) -> dict: """获取当前状态字典""" # 调用 get_interest 来确保状态已更新 interest = self.get_interest() return { "interest_level": round(interest, 2), "last_update_time": self.last_update_time, "current_reply_probability": round(self.current_reply_probability, 4), # 添加概率到状态 "is_above_threshold": self.is_above_threshold, # 添加阈值状态 "last_interaction_time": self.last_interaction_time # 新增:添加最后交互时间到状态 # 可以选择性地暴露 last_increase_amount 给状态,方便调试 # "last_increase_amount": round(self.last_increase_amount, 2) } def should_evaluate_reply(self) -> bool: """ 判断是否应该触发一次回复评估。 首先更新概率状态,然后根据当前概率进行随机判断。 """ current_time = time.time() # 确保概率是基于最新兴趣值计算的 self._update_reply_probability(current_time) # 更新兴趣衰减(如果需要,取决于逻辑,这里保持和 get_interest 一致) # self._calculate_decay(current_time) # self.last_update_time = current_time # 更新时间戳 if self.current_reply_probability > 0: # 只有在阈值之上且概率大于0时才有可能触发 trigger = random.random() < self.current_reply_probability # if trigger: # logger.info(f"回复概率评估触发! 概率: {self.current_reply_probability:.4f}, 阈值: {self.trigger_threshold}, 兴趣: {self.interest_level:.2f}") # # 可选:触发后是否重置/降低概率?根据需要决定 # # self.current_reply_probability = self.base_reply_probability # 例如,触发后降回基础概率 # # self.current_reply_probability *= 0.5 # 例如,触发后概率减半 # else: # logger.debug(f"回复概率评估未触发。概率: {self.current_reply_probability:.4f}") return trigger else: # logger.debug(f"Reply evaluation check: Below threshold or zero probability. Probability: {self.current_reply_probability:.4f}") return False class InterestManager: _instance = None _lock = threading.Lock() _initialized = False def __new__(cls, *args, **kwargs): if cls._instance is None: with cls._lock: # Double-check locking if cls._instance is None: cls._instance = super().__new__(cls) return cls._instance def __init__(self): if not self._initialized: with self._lock: # 确保初始化也只执行一次 if not self._initialized: logger.info("Initializing InterestManager singleton...") # key: stream_id (str), value: InterestChatting instance self.interest_dict: dict[str, InterestChatting] = {} # 保留旧的快照文件路径变量,尽管此任务不再写入 self._snapshot_log_file_path = os.path.join(LOG_DIRECTORY, LOG_FILENAME) # 定义新的历史日志文件路径 self._history_log_file_path = os.path.join(LOG_DIRECTORY, HISTORY_LOG_FILENAME) self._ensure_log_directory() self._cleanup_task = None self._logging_task = None # 添加日志任务变量 self._initialized = True logger.info("InterestManager initialized.") # 修改日志消息 self._decay_task = None # 新增:衰减任务变量 def _ensure_log_directory(self): """确保日志目录存在""" try: os.makedirs(LOG_DIRECTORY, exist_ok=True) logger.info(f"Log directory '{LOG_DIRECTORY}' ensured.") except OSError as e: logger.error(f"Error creating log directory '{LOG_DIRECTORY}': {e}") async def _periodic_cleanup_task(self, interval_seconds: int, max_age_seconds: int): """后台清理任务的异步函数""" while True: await asyncio.sleep(interval_seconds) logger.info(f"运行定期清理 (间隔: {interval_seconds}秒)...") self.cleanup_inactive_chats(max_age_seconds=max_age_seconds) async def _periodic_log_task(self, interval_seconds: int): """后台日志记录任务的异步函数 (记录历史数据,包含 group_name)""" while True: await asyncio.sleep(interval_seconds) # logger.debug(f"运行定期历史记录 (间隔: {interval_seconds}秒)...") try: current_timestamp = time.time() all_states = self.get_all_interest_states() # 获取当前所有状态 # 以追加模式打开历史日志文件 with open(self._history_log_file_path, 'a', encoding='utf-8') as f: count = 0 for stream_id, state in all_states.items(): # *** Get group name from ChatManager *** group_name = stream_id # Default to stream_id try: # Use the imported chat_manager instance chat_stream = chat_manager.get_stream(stream_id) if chat_stream and chat_stream.group_info: group_name = chat_stream.group_info.group_name elif chat_stream and not chat_stream.group_info: # Handle private chats - maybe use user nickname? group_name = f"私聊_{chat_stream.user_info.user_nickname}" if chat_stream.user_info else stream_id except Exception as e: logger.warning(f"Could not get group name for stream_id {stream_id}: {e}") # Fallback to stream_id is already handled by default value log_entry = { "timestamp": round(current_timestamp, 2), "stream_id": stream_id, "interest_level": state.get("interest_level", 0.0), # 确保有默认值 "group_name": group_name, # *** Add group_name *** # --- 新增:记录概率相关信息 --- "reply_probability": state.get("current_reply_probability", 0.0), "is_above_threshold": state.get("is_above_threshold", False) # --- 结束新增 --- } # 将每个条目作为单独的 JSON 行写入 f.write(json.dumps(log_entry, ensure_ascii=False) + '\n') count += 1 # logger.debug(f"Successfully appended {count} interest history entries to {self._history_log_file_path}") # 注意:不再写入快照文件 interest_log.json # 如果需要快照文件,可以在这里单独写入 self._snapshot_log_file_path # 例如: # with open(self._snapshot_log_file_path, 'w', encoding='utf-8') as snap_f: # json.dump(all_states, snap_f, indent=4, ensure_ascii=False) # logger.debug(f"Successfully wrote snapshot to {self._snapshot_log_file_path}") except IOError as e: logger.error(f"Error writing interest history log to {self._history_log_file_path}: {e}") except Exception as e: logger.error(f"Unexpected error during periodic history logging: {e}") async def _periodic_decay_task(self): """后台衰减任务的异步函数,每秒更新一次所有实例的衰减""" while True: await asyncio.sleep(1) # 每秒运行一次 current_time = time.time() # logger.debug("Running periodic decay calculation...") # 调试日志,可能过于频繁 # 创建字典项的快照进行迭代,避免在迭代时修改字典的问题 items_snapshot = list(self.interest_dict.items()) count = 0 for stream_id, chatting in items_snapshot: try: # 调用 InterestChatting 实例的衰减方法 chatting._calculate_decay(current_time) count += 1 except Exception as e: logger.error(f"Error calculating decay for stream_id {stream_id}: {e}") # if count > 0: # 仅在实际处理了项目时记录日志,避免空闲时刷屏 # logger.debug(f"Applied decay to {count} streams.") async def start_background_tasks(self): """启动清理,启动衰减,启动记录,启动启动启动启动启动""" if self._cleanup_task is None or self._cleanup_task.done(): self._cleanup_task = asyncio.create_task( self._periodic_cleanup_task( interval_seconds=CLEANUP_INTERVAL_SECONDS, max_age_seconds=INACTIVE_THRESHOLD_SECONDS ) ) logger.info(f"已创建定期清理任务。间隔时间: {CLEANUP_INTERVAL_SECONDS}秒, 不活跃阈值: {INACTIVE_THRESHOLD_SECONDS}秒") else: logger.warning("跳过创建清理任务:任务已在运行或存在。") if self._logging_task is None or self._logging_task.done(): self._logging_task = asyncio.create_task( self._periodic_log_task(interval_seconds=LOG_INTERVAL_SECONDS) ) logger.info(f"已创建定期日志任务。间隔时间: {LOG_INTERVAL_SECONDS}秒") else: logger.warning("跳过创建日志任务:任务已在运行或存在。") # 启动新的衰减任务 if self._decay_task is None or self._decay_task.done(): self._decay_task = asyncio.create_task( self._periodic_decay_task() ) logger.info("已创建定期衰减任务。间隔时间: 1秒") else: logger.warning("跳过创建衰减任务:任务已在运行或存在。") def get_all_interest_states(self) -> dict[str, dict]: """获取所有聊天流的当前兴趣状态""" # 不再需要 current_time, 因为 get_state 现在不接收它 states = {} # 创建副本以避免在迭代时修改字典 items_snapshot = list(self.interest_dict.items()) for stream_id, chatting in items_snapshot: try: # 直接调用 get_state,它会使用内部的 get_interest 获取已更新的值 states[stream_id] = chatting.get_state() except Exception as e: logger.warning(f"Error getting state for stream_id {stream_id}: {e}") return states def get_interest_chatting(self, stream_id: str) -> Optional[InterestChatting]: """获取指定流的 InterestChatting 实例,如果不存在则返回 None""" return self.interest_dict.get(stream_id) def _get_or_create_interest_chatting(self, stream_id: str) -> InterestChatting: """获取或创建指定流的 InterestChatting 实例 (线程安全)""" # 由于字典操作本身在 CPython 中大部分是原子的, # 且主要写入发生在 __init__ 和 cleanup (由单任务执行), # 读取和 get_or_create 主要在事件循环线程,简单场景下可能不需要锁。 # 但为保险起见或跨线程使用考虑,可加锁。 # with self._lock: if stream_id not in self.interest_dict: logger.debug(f"Creating new InterestChatting for stream_id: {stream_id}") # --- 修改:创建时传入概率相关参数 (如果需要定制化,否则使用默认值) --- self.interest_dict[stream_id] = InterestChatting( # decay_rate=..., max_interest=..., # 可以从配置读取 trigger_threshold=REPLY_TRIGGER_THRESHOLD, # 使用全局常量 base_reply_probability=BASE_REPLY_PROBABILITY, increase_rate=PROBABILITY_INCREASE_RATE_PER_SECOND, decay_factor=PROBABILITY_DECAY_FACTOR_PER_SECOND, max_probability=MAX_REPLY_PROBABILITY ) # --- 结束修改 --- # 首次创建时兴趣为 0,由第一次消息的 activate rate 决定初始值 return self.interest_dict[stream_id] def get_interest(self, stream_id: str) -> float: """获取指定聊天流当前的兴趣度 (值由后台任务更新)""" # current_time = time.time() # 不再需要获取当前时间 interest_chatting = self._get_or_create_interest_chatting(stream_id) # 直接调用修改后的 get_interest,不传入时间 return interest_chatting.get_interest() def increase_interest(self, stream_id: str, value: float): """当收到消息时,增加指定聊天流的兴趣度""" current_time = time.time() interest_chatting = self._get_or_create_interest_chatting(stream_id) # 调用修改后的 increase_interest,不再传入 message interest_chatting.increase_interest(current_time, value) stream_name = chat_manager.get_stream_name(stream_id) or stream_id # 获取流名称 logger.debug(f"增加了聊天流 {stream_name} 的兴趣度 {value:.2f},当前值为 {interest_chatting.interest_level:.2f}") # 更新日志 def decrease_interest(self, stream_id: str, value: float): """降低指定聊天流的兴趣度""" current_time = time.time() # 尝试获取,如果不存在则不做任何事 interest_chatting = self.get_interest_chatting(stream_id) if interest_chatting: interest_chatting.decrease_interest(current_time, value) stream_name = chat_manager.get_stream_name(stream_id) or stream_id # 获取流名称 logger.debug(f"降低了聊天流 {stream_name} 的兴趣度 {value:.2f},当前值为 {interest_chatting.interest_level:.2f}") else: stream_name = chat_manager.get_stream_name(stream_id) or stream_id # 获取流名称 logger.warning(f"尝试降低不存在的聊天流 {stream_name} 的兴趣度") def cleanup_inactive_chats(self, max_age_seconds=INACTIVE_THRESHOLD_SECONDS): """ 清理长时间不活跃的聊天流记录 max_age_seconds: 超过此时间未更新的将被清理 """ current_time = time.time() keys_to_remove = [] initial_count = len(self.interest_dict) # with self._lock: # 如果需要锁整个迭代过程 # 创建副本以避免在迭代时修改字典 items_snapshot = list(self.interest_dict.items()) for stream_id, chatting in items_snapshot: # 先计算当前兴趣,确保是最新的 # 加锁保护 chatting 对象状态的读取和可能的修改 # with self._lock: # 如果 InterestChatting 内部操作不是原子的 last_interaction = chatting.last_interaction_time # 使用最后交互时间 should_remove = False reason = "" # 只有设置了 max_age_seconds 才检查时间 if max_age_seconds is not None and (current_time - last_interaction) > max_age_seconds: # 使用 last_interaction should_remove = True reason = f"inactive time ({current_time - last_interaction:.0f}s) > max age ({max_age_seconds}s)" # 更新日志信息 if should_remove: keys_to_remove.append(stream_id) stream_name = chat_manager.get_stream_name(stream_id) or stream_id # 获取流名称 logger.debug(f"Marking stream {stream_name} for removal. Reason: {reason}") if keys_to_remove: logger.info(f"清理识别到 {len(keys_to_remove)} 个不活跃/低兴趣的流。") # with self._lock: # 确保删除操作的原子性 for key in keys_to_remove: # 再次检查 key 是否存在,以防万一在迭代和删除之间状态改变 if key in self.interest_dict: del self.interest_dict[key] stream_name = chat_manager.get_stream_name(key) or key # 获取流名称 logger.debug(f"移除了流: {stream_name}") final_count = initial_count - len(keys_to_remove) logger.info(f"清理完成。移除了 {len(keys_to_remove)} 个流。当前数量: {final_count}") else: logger.info(f"清理完成。没有流符合移除条件。当前数量: {initial_count}")