import aiohttp import asyncio import requests import time import re from typing import Tuple, Union from nonebot import get_driver from loguru import logger from ..chat.config import global_config from ..chat.utils_image import compress_base64_image_by_scale driver = get_driver() config = driver.config class LLM_request: def __init__(self, model, **kwargs): # 将大写的配置键转换为小写并从config中获取实际值 try: self.api_key = getattr(config, model["key"]) self.base_url = getattr(config, model["base_url"]) except AttributeError as e: logger.error(f"配置错误:找不到对应的配置项 - {str(e)}") raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e self.model_name = model["name"] self.params = kwargs async def generate_response(self, prompt: str) -> Tuple[str, str]: """根据输入的提示生成模型的异步响应""" headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } # 构建请求体 data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], **self.params } # 发送请求到完整的chat/completions端点 api_url = f"{self.base_url.rstrip('/')}/chat/completions" logger.info(f"发送请求到URL: {api_url}+{self.model_name}") # 记录请求的URL max_retries = 3 base_wait_time = 15 for retry in range(max_retries): try: async with aiohttp.ClientSession() as session: async with session.post(api_url, headers=headers, json=data) as response: if response.status == 429: wait_time = base_wait_time * (2 ** retry) # 指数退避 logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") await asyncio.sleep(wait_time) continue if response.status in [500, 503]: logger.error(f"服务器错误: {response.status}") raise RuntimeError("服务器负载过高,模型恢复失败QAQ") response.raise_for_status() # 检查其他响应状态 result = await response.json() if "choices" in result and len(result["choices"]) > 0: message = result["choices"][0]["message"] content = message.get("content", "") think_match = None reasoning_content = message.get("reasoning_content", "") if not reasoning_content: think_match = re.search(r'(.*?)', content, re.DOTALL) if think_match: reasoning_content = think_match.group(1).strip() content = re.sub(r'.*?', '', content, flags=re.DOTALL).strip() return content, reasoning_content return "没有返回结果", "" except Exception as e: if retry < max_retries - 1: # 如果还有重试机会 wait_time = base_wait_time * (2 ** retry) logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True) await asyncio.sleep(wait_time) else: logger.critical(f"请求失败: {str(e)}", exc_info=True) raise RuntimeError(f"API请求失败: {str(e)}") logger.error("达到最大重试次数,请求仍然失败") raise RuntimeError("达到最大重试次数,API请求仍然失败") async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]: """根据输入的提示和图片生成模型的异步响应""" headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } # 构建请求体 def build_request_data(img_base64: str): return { "model": self.model_name, "messages": [ { "role": "user", "content": [ { "type": "text", "text": prompt }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{img_base64}" } } ] } ], **self.params } # 发送请求到完整的chat/completions端点 api_url = f"{self.base_url.rstrip('/')}/chat/completions" logger.info(f"发送请求到URL: {api_url}+{self.model_name}") # 记录请求的URL max_retries = 3 base_wait_time = 15 current_image_base64 = image_base64 current_image_base64 = compress_base64_image_by_scale(current_image_base64) for retry in range(max_retries): try: data = build_request_data(current_image_base64) async with aiohttp.ClientSession() as session: async with session.post(api_url, headers=headers, json=data) as response: if response.status == 429: wait_time = base_wait_time * (2 ** retry) # 指数退避 logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") await asyncio.sleep(wait_time) continue elif response.status == 413: logger.warning("图片太大(413),尝试压缩...") current_image_base64 = compress_base64_image_by_scale(current_image_base64) continue response.raise_for_status() # 检查其他响应状态 result = await response.json() if "choices" in result and len(result["choices"]) > 0: message = result["choices"][0]["message"] content = message.get("content", "") think_match = None reasoning_content = message.get("reasoning_content", "") if not reasoning_content: think_match = re.search(r'(.*?)', content, re.DOTALL) if think_match: reasoning_content = think_match.group(1).strip() content = re.sub(r'.*?', '', content, flags=re.DOTALL).strip() return content, reasoning_content return "没有返回结果", "" except Exception as e: if retry < max_retries - 1: # 如果还有重试机会 wait_time = base_wait_time * (2 ** retry) logger.error(f"[image回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True) await asyncio.sleep(wait_time) else: logger.critical(f"请求失败: {str(e)}", exc_info=True) raise RuntimeError(f"API请求失败: {str(e)}") logger.error("达到最大重试次数,请求仍然失败") raise RuntimeError("达到最大重试次数,API请求仍然失败") async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]: """异步方式根据输入的提示生成模型的响应""" headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } # 构建请求体 data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], "temperature": 0.5, **self.params } # 发送请求到完整的 chat/completions 端点 api_url = f"{self.base_url.rstrip('/')}/chat/completions" logger.info(f"Request URL: {api_url}") # 记录请求的 URL max_retries = 3 base_wait_time = 15 async with aiohttp.ClientSession() as session: for retry in range(max_retries): try: async with session.post(api_url, headers=headers, json=data) as response: if response.status == 429: wait_time = base_wait_time * (2 ** retry) # 指数退避 logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") await asyncio.sleep(wait_time) continue response.raise_for_status() # 检查其他响应状态 result = await response.json() if "choices" in result and len(result["choices"]) > 0: content = result["choices"][0]["message"]["content"] reasoning_content = result["choices"][0]["message"].get("reasoning_content", "") return content, reasoning_content return "没有返回结果", "" except Exception as e: if retry < max_retries - 1: # 如果还有重试机会 wait_time = base_wait_time * (2 ** retry) logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}") await asyncio.sleep(wait_time) else: logger.error(f"请求失败: {str(e)}") return f"请求失败: {str(e)}", "" logger.error("达到最大重试次数,请求仍然失败") return "达到最大重试次数,请求仍然失败", "" def generate_response_for_image_sync(self, prompt: str, image_base64: str) -> Tuple[str, str]: """同步方法:根据输入的提示和图片生成模型的响应""" headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } image_base64=compress_base64_image_by_scale(image_base64) # 构建请求体 data = { "model": self.model_name, "messages": [ { "role": "user", "content": [ { "type": "text", "text": prompt }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image_base64}" } } ] } ], **self.params } # 发送请求到完整的chat/completions端点 api_url = f"{self.base_url.rstrip('/')}/chat/completions" logger.info(f"发送请求到URL: {api_url}+{self.model_name}") # 记录请求的URL max_retries = 2 base_wait_time = 6 for retry in range(max_retries): try: response = requests.post(api_url, headers=headers, json=data, timeout=30) if response.status_code == 429: wait_time = base_wait_time * (2 ** retry) logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") time.sleep(wait_time) continue response.raise_for_status() # 检查其他响应状态 result = response.json() if "choices" in result and len(result["choices"]) > 0: message = result["choices"][0]["message"] content = message.get("content", "") think_match = None reasoning_content = message.get("reasoning_content", "") if not reasoning_content: think_match = re.search(r'(.*?)', content, re.DOTALL) if think_match: reasoning_content = think_match.group(1).strip() content = re.sub(r'.*?', '', content, flags=re.DOTALL).strip() return content, reasoning_content return "没有返回结果", "" except Exception as e: if retry < max_retries - 1: # 如果还有重试机会 wait_time = base_wait_time * (2 ** retry) logger.error(f"[image_sync回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True) time.sleep(wait_time) else: logger.critical(f"请求失败: {str(e)}", exc_info=True) raise RuntimeError(f"API请求失败: {str(e)}") logger.error("达到最大重试次数,请求仍然失败") raise RuntimeError("达到最大重试次数,API请求仍然失败") def get_embedding_sync(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]: """同步方法:获取文本的embedding向量 Args: text: 需要获取embedding的文本 model: 使用的模型名称,默认为"BAAI/bge-m3" Returns: list: embedding向量,如果失败则返回None """ headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } data = { "model": model, "input": text, "encoding_format": "float" } api_url = f"{self.base_url.rstrip('/')}/embeddings" logger.info(f"发送请求到URL: {api_url}+{self.model_name}") # 记录请求的URL max_retries = 2 base_wait_time = 6 for retry in range(max_retries): try: response = requests.post(api_url, headers=headers, json=data, timeout=30) if response.status_code == 429: wait_time = base_wait_time * (2 ** retry) logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") time.sleep(wait_time) continue response.raise_for_status() result = response.json() if 'data' in result and len(result['data']) > 0: return result['data'][0]['embedding'] return None except Exception as e: if retry < max_retries - 1: wait_time = base_wait_time * (2 ** retry) logger.error(f"[embedding_sync]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True) time.sleep(wait_time) else: logger.critical(f"embedding请求失败: {str(e)}", exc_info=True) return None logger.error("达到最大重试次数,embedding请求仍然失败") return None async def get_embedding(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]: """异步方法:获取文本的embedding向量 Args: text: 需要获取embedding的文本 model: 使用的模型名称,默认为"BAAI/bge-m3" Returns: list: embedding向量,如果失败则返回None """ headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } data = { "model": model, "input": text, "encoding_format": "float" } api_url = f"{self.base_url.rstrip('/')}/embeddings" logger.info(f"发送请求到URL: {api_url}+{self.model_name}") # 记录请求的URL max_retries = 3 base_wait_time = 15 for retry in range(max_retries): try: async with aiohttp.ClientSession() as session: async with session.post(api_url, headers=headers, json=data) as response: if response.status == 429: wait_time = base_wait_time * (2 ** retry) logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") await asyncio.sleep(wait_time) continue response.raise_for_status() result = await response.json() if 'data' in result and len(result['data']) > 0: return result['data'][0]['embedding'] return None except Exception as e: if retry < max_retries - 1: wait_time = base_wait_time * (2 ** retry) logger.error(f"[embedding]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True) await asyncio.sleep(wait_time) else: logger.critical(f"embedding请求失败: {str(e)}", exc_info=True) return None logger.error("达到最大重试次数,embedding请求仍然失败") return None