feat;模型选择现在可以使用完全随机的策略

Update model_config_template.toml
pull/1467/head
SengokuCola 2025-12-27 17:33:24 +08:00
parent 99665e7918
commit f92136bffc
3 changed files with 37 additions and 9 deletions

View File

@ -97,6 +97,9 @@ class TaskConfig(ConfigBase):
slow_threshold: float = 15.0
"""慢请求阈值(秒),超过此值会输出警告日志"""
selection_strategy: str = field(default="balance")
"""模型选择策略balance负载均衡或 random随机选择"""
@dataclass
class ModelTaskConfig(ConfigBase):

View File

@ -1,6 +1,7 @@
import re
import asyncio
import time
import random
from enum import Enum
from rich.traceback import install
@ -266,7 +267,7 @@ class LLMRequest:
def _select_model(self, exclude_models: Optional[Set[str]] = None) -> Tuple[ModelInfo, APIProvider, BaseClient]:
"""
根据总tokens和惩罚值选择的模型
根据配置的策略选择模型balance负载均衡 random随机选择
"""
available_models = {
model: scores
@ -276,15 +277,30 @@ class LLMRequest:
if not available_models:
raise RuntimeError("没有可用的模型可供选择。所有模型均已尝试失败。")
least_used_model_name = min(
available_models,
key=lambda k: available_models[k][0] + available_models[k][1] * 300 + available_models[k][2] * 1000,
)
model_info = model_config.get_model_info(least_used_model_name)
strategy = self.model_for_task.selection_strategy.lower()
if strategy == "random":
# 随机选择策略
selected_model_name = random.choice(list(available_models.keys()))
elif strategy == "balance":
# 负载均衡策略根据总tokens和惩罚值选择
selected_model_name = min(
available_models,
key=lambda k: available_models[k][0] + available_models[k][1] * 300 + available_models[k][2] * 1000,
)
else:
# 默认使用负载均衡策略
logger.warning(f"未知的选择策略 '{strategy}',使用默认的负载均衡策略")
selected_model_name = min(
available_models,
key=lambda k: available_models[k][0] + available_models[k][1] * 300 + available_models[k][2] * 1000,
)
model_info = model_config.get_model_info(selected_model_name)
api_provider = model_config.get_provider(model_info.api_provider)
force_new_client = self.request_type == "embedding"
client = client_registry.get_client_class_instance(api_provider, force_new=force_new_client)
logger.debug(f"选择请求模型: {model_info.name}")
logger.debug(f"选择请求模型: {model_info.name} (策略: {strategy})")
total_tokens, penalty, usage_penalty = self.model_usage[model_info.name]
self.model_usage[model_info.name] = (total_tokens, penalty, usage_penalty + 1)
return model_info, api_provider, client

View File

@ -1,5 +1,5 @@
[inner]
version = "1.10.1"
version = "1.11.0"
# 配置文件版本号迭代规则同bot_config.toml
@ -140,38 +140,45 @@ model_list = ["siliconflow-deepseek-v3.2"] # 使用的模型列表,每个子
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 4096 # 最大输出token数
slow_threshold = 15.0 # 慢请求阈值(秒),模型等待回复时间超过此值会输出警告日志
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
[model_task_config.tool_use] #功能模型,需要使用支持工具调用的模型,请使用较快的小模型(调用量较大)
model_list = ["qwen3-30b","qwen3-next-80b"]
temperature = 0.7
max_tokens = 1024
slow_threshold = 10.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
[model_task_config.replyer] # 首要回复模型,还用于表达方式学习
model_list = ["siliconflow-deepseek-v3.2","siliconflow-deepseek-v3.2-think","siliconflow-glm-4.6","siliconflow-glm-4.6-think"]
temperature = 0.3 # 模型温度新V3建议0.1-0.3
max_tokens = 2048
slow_threshold = 25.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
[model_task_config.planner] #决策:负责决定麦麦该什么时候回复的模型
model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.3
max_tokens = 800
slow_threshold = 12.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
[model_task_config.vlm] # 图像识别模型
model_list = ["qwen3-vl-30"]
max_tokens = 256
slow_threshold = 15.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
[model_task_config.voice] # 语音识别模型
model_list = ["sensevoice-small"]
slow_threshold = 12.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
# 嵌入模型
[model_task_config.embedding]
model_list = ["bge-m3"]
slow_threshold = 5.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
# ------------LPMM知识库模型------------
@ -180,9 +187,11 @@ model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.2
max_tokens = 800
slow_threshold = 20.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择
[model_task_config.lpmm_rdf_build] # RDF构建模型
model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.2
max_tokens = 800
slow_threshold = 20.0
slow_threshold = 20.0
selection_strategy = "random" # 模型选择策略random负载均衡或 random随机选择