better:美化logger

pull/1217/head
SengokuCola 2025-08-24 15:26:24 +08:00
parent e860b7033a
commit d10e08f15d
9 changed files with 89 additions and 109 deletions

View File

@ -140,10 +140,8 @@ class HeartFCMessageReceiver:
replace_bot_name=True
)
if keywords:
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[兴趣度:{interested_rate:.2f}][关键词:{keywords}]") # type: ignore
else:
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[兴趣度:{interested_rate:.2f}]") # type: ignore
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[{interested_rate:.2f}]") # type: ignore
_ = Person.register_person(platform=message.message_info.platform, user_id=message.message_info.user_info.user_id,nickname=userinfo.user_nickname) # type: ignore

View File

@ -17,7 +17,7 @@ logger = get_logger("sender")
async def send_message(message: MessageSending, show_log=True) -> bool:
"""合并后的消息发送函数包含WS发送和日志记录"""
message_preview = truncate_message(message.processed_plain_text, max_length=120)
message_preview = truncate_message(message.processed_plain_text, max_length=200)
try:
# 直接调用API发送消息

View File

@ -131,7 +131,7 @@ class ActionModifier:
available_actions = list(self.action_manager.get_using_actions().keys())
available_actions_text = "".join(available_actions) if available_actions else ""
logger.info(
logger.debug(
f"{self.log_prefix} 当前可用动作: {available_actions_text}||移除: {removals_summary}"
)

View File

@ -512,7 +512,6 @@ class ActionPlanner:
self.last_obs_time_mark = time.time()
try:
logger.info(f"{self.log_prefix}开始构建副Planner")
sub_planner_actions: Dict[str, ActionInfo] = {}
for action_name, action_info in available_actions.items():
@ -537,7 +536,7 @@ class ActionPlanner:
sub_planner_size = int(global_config.chat.planner_size) + 1
sub_planner_num = math.ceil(sub_planner_actions_num / sub_planner_size)
logger.info(f"{self.log_prefix}副规划器数量: {sub_planner_num}, 副规划器大小: {sub_planner_size}")
logger.info(f"{self.log_prefix}使用{sub_planner_num}个小脑进行思考(尺寸:{sub_planner_size}")
# 将sub_planner_actions随机分配到sub_planner_num个List中
sub_planner_lists: List[List[Tuple[str, ActionInfo]]] = []

View File

@ -612,7 +612,7 @@ class StatisticOutputTask(AsyncTask):
f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}",
f"总消息数: {stats[TOTAL_MSG_CNT]}",
f"总请求数: {stats[TOTAL_REQ_CNT]}",
f"总花费: {stats[TOTAL_COST]:.4f}¥",
f"总花费: {stats[TOTAL_COST]:.2f}¥",
"",
]
@ -625,7 +625,7 @@ class StatisticOutputTask(AsyncTask):
"""
if stats[TOTAL_REQ_CNT] <= 0:
return ""
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥ {:>10} {:>10}"
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.2f}¥ {:>10.1f} {:>10.1f}"
output = [
"按模型分类统计:",
@ -723,9 +723,9 @@ class StatisticOutputTask(AsyncTask):
f"<td>{stat_data[IN_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[COST_BY_MODEL][model_name]:.4f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_MODEL][model_name]:.3f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_MODEL][model_name]:.3f} 秒</td>"
f"<td>{stat_data[COST_BY_MODEL][model_name]:.2f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_MODEL][model_name]:.1f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_MODEL][model_name]:.1f} 秒</td>"
f"</tr>"
for model_name, count in sorted(stat_data[REQ_CNT_BY_MODEL].items())
]
@ -739,9 +739,9 @@ class StatisticOutputTask(AsyncTask):
f"<td>{stat_data[IN_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[OUT_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[COST_BY_TYPE][req_type]:.4f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_TYPE][req_type]:.3f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_TYPE][req_type]:.3f} 秒</td>"
f"<td>{stat_data[COST_BY_TYPE][req_type]:.2f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_TYPE][req_type]:.1f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_TYPE][req_type]:.1f} 秒</td>"
f"</tr>"
for req_type, count in sorted(stat_data[REQ_CNT_BY_TYPE].items())
]
@ -755,9 +755,9 @@ class StatisticOutputTask(AsyncTask):
f"<td>{stat_data[IN_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[COST_BY_MODULE][module_name]:.4f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_MODULE][module_name]:.3f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_MODULE][module_name]:.3f} 秒</td>"
f"<td>{stat_data[COST_BY_MODULE][module_name]:.2f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_MODULE][module_name]:.1f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_MODULE][module_name]:.1f} 秒</td>"
f"</tr>"
for module_name, count in sorted(stat_data[REQ_CNT_BY_MODULE].items())
]
@ -780,79 +780,47 @@ class StatisticOutputTask(AsyncTask):
<p class=\"info-item\"><strong>总在线时间: </strong>{_format_online_time(stat_data[ONLINE_TIME])}</p>
<p class=\"info-item\"><strong>总消息数: </strong>{stat_data[TOTAL_MSG_CNT]}</p>
<p class=\"info-item\"><strong>总请求数: </strong>{stat_data[TOTAL_REQ_CNT]}</p>
<p class=\"info-item\"><strong>总花费: </strong>{stat_data[TOTAL_COST]:.4f} ¥</p>
<p class=\"info-item\"><strong>总花费: </strong>{stat_data[TOTAL_COST]:.2f} ¥</p>
<div style="display: flex; flex-wrap: wrap; gap: 20px; margin: 20px 0;">
<div style="flex: 1; min-width: 300px;">
<h2>按模型分类统计</h2>
<table>
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th></tr></thead>
<tbody>
{model_rows}
</tbody>
</table>
</div>
<div style="flex: 1; min-width: 300px;">
<h3>模型调用次数分布</h3>
<canvas id="modelPieChart_{div_id}" width="300" height="300"></canvas>
</div>
</div>
<h2>按模型分类统计</h2>
<table>
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th></tr></thead>
<tbody>
{model_rows}
</tbody>
</table>
<div style="display: flex; flex-wrap: wrap; gap: 20px; margin: 20px 0;">
<div style="flex: 1; min-width: 300px;">
<h2>按模块分类统计</h2>
<table>
<thead>
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th></tr>
</thead>
<tbody>
{module_rows}
</tbody>
</table>
</div>
<div style="flex: 1; min-width: 300px;">
<h3>模块调用次数分布</h3>
<canvas id="modulePieChart_{div_id}" width="300" height="300"></canvas>
</div>
</div>
<h2>按模块分类统计</h2>
<table>
<thead>
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th></tr>
</thead>
<tbody>
{module_rows}
</tbody>
</table>
<div style="display: flex; flex-wrap: wrap; gap: 20px; margin: 20px 0;">
<div style="flex: 1; min-width: 300px;">
<h2>按请求类型分类统计</h2>
<table>
<thead>
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th></tr>
</thead>
<tbody>
{type_rows}
</tbody>
</table>
</div>
<div style="flex: 1; min-width: 300px;">
<h3>请求类型分布</h3>
<canvas id="typePieChart_{div_id}" width="300" height="300"></canvas>
</div>
</div>
<h2>按请求类型分类统计</h2>
<table>
<thead>
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th></tr>
</thead>
<tbody>
{type_rows}
</tbody>
</table>
<div style="display: flex; flex-wrap: wrap; gap: 20px; margin: 20px 0;">
<div style="flex: 1; min-width: 300px;">
<h2>聊天消息统计</h2>
<table>
<thead>
<tr><th>联系人/群组名称</th><th>消息数量</th></tr>
</thead>
<tbody>
{chat_rows}
</tbody>
</table>
</div>
<div style="flex: 1; min-width: 300px;">
<h3>消息分布</h3>
<canvas id="chatPieChart_{div_id}" width="300" height="300"></canvas>
</div>
</div>
<h2>聊天消息统计</h2>
<table>
<thead>
<tr><th>联系人/群组名称</th><th>消息数量</th></tr>
</thead>
<tbody>
{chat_rows}
</tbody>
</table>
<script>
// 为当前统计卡片创建饼图
createPieCharts_{div_id}();
@ -991,7 +959,7 @@ class StatisticOutputTask(AsyncTask):
}}
}});
}}
</script>
</div>
"""

View File

@ -330,11 +330,31 @@ def reconfigure_existing_loggers():
# 定义模块颜色映射
MODULE_COLORS = {
# 发送
# "\033[38;5;67m" 这个颜色代码的含义如下:
# \033 转义序列的起始表示后面是控制字符ESC
# [38;5;67m
# 38 :设置前景色(字体颜色),如果是背景色则用 48
# 5 表示使用8位256色模式
# 67 具体的颜色编号0-255这里是较暗的蓝色
"sender": "\033[38;5;24m", # 67号色较暗的蓝色适合不显眼的日志
"send_api": "\033[38;5;24m", # 208号色橙色适合突出显示
# 生成
"replyer": "\033[38;5;208m", # 橙色
"llm_api": "\033[38;5;208m", # 橙色
# 消息处理
"chat": "\033[38;5;82m", # 亮蓝色
#emoji
"emoji": "\033[38;5;214m", # 橙黄色,偏向橙色
"emoji_api": "\033[38;5;214m", # 橙黄色,偏向橙色
# 核心模块
"main": "\033[1;97m", # 亮白色+粗体 (主程序)
"api": "\033[92m", # 亮绿色
"emoji": "\033[38;5;214m", # 橙黄色偏向橙色但与replyer和action_manager不同
"chat": "\033[92m", # 亮蓝色
"config": "\033[93m", # 亮黄色
"common": "\033[95m", # 亮紫色
"tools": "\033[96m", # 亮青色
@ -358,18 +378,17 @@ MODULE_COLORS = {
"background_tasks": "\033[38;5;240m", # 灰色
"chat_message": "\033[38;5;45m", # 青色
"chat_stream": "\033[38;5;51m", # 亮青色
"sender": "\033[38;5;67m", # 稍微暗一些的蓝色,不显眼
"message_storage": "\033[38;5;33m", # 深蓝色
"expressor": "\033[38;5;166m", # 橙色
# 专注聊天模块
"replyer": "\033[38;5;166m", # 橙色
"memory_activator": "\033[38;5;117m", # 天蓝色
# 插件系统
"plugins": "\033[31m", # 红色
"plugin_api": "\033[33m", # 黄色
"plugin_manager": "\033[38;5;208m", # 红色
"base_plugin": "\033[38;5;202m", # 橙红色
"send_api": "\033[38;5;208m", # 橙色
"base_command": "\033[38;5;208m", # 橙色
"component_registry": "\033[38;5;214m", # 橙黄色
"stream_api": "\033[38;5;220m", # 黄色
@ -377,7 +396,6 @@ MODULE_COLORS = {
"heartflow_api": "\033[38;5;154m", # 黄绿色
"action_apis": "\033[38;5;118m", # 绿色
"independent_apis": "\033[38;5;82m", # 绿色
"llm_api": "\033[38;5;46m", # 亮绿色
"database_api": "\033[38;5;10m", # 绿色
"utils_api": "\033[38;5;14m", # 青色
"message_api": "\033[38;5;6m", # 青色
@ -422,9 +440,15 @@ MODULE_COLORS = {
# 定义模块别名映射 - 将真实的logger名称映射到显示的别名
MODULE_ALIASES = {
# 示例映射
"sender": "消息发送",
"send_api": "消息发送API",
"replyer": "言语",
"llm_api": "生成API",
"emoji": "表情包",
"no_action_action": "摸鱼",
"reply_action": "回复",
"emoji_api": "表情包API",
"chat": "所见",
"action_manager": "动作",
"memory_activator": "记忆",
"tool_use": "工具",
@ -434,14 +458,13 @@ MODULE_ALIASES = {
"memory": "记忆",
"tool_executor": "工具",
"hfc": "聊天节奏",
"chat": "所见",
"plugin_manager": "插件",
"relationship_builder": "关系",
"llm_models": "模型",
"person_info": "人物",
"chat_stream": "聊天流",
"planner": "规划器",
"replyer": "言语",
"config": "配置",
"main": "主程序",
}

View File

@ -87,8 +87,6 @@ async def get_random(count: Optional[int] = 1) -> List[Tuple[str, str, str]]:
return []
try:
logger.info(f"[EmojiAPI] 随机获取 {count} 个表情包")
emoji_manager = get_emoji_manager()
all_emojis = emoji_manager.emoji_objects
@ -129,7 +127,7 @@ async def get_random(count: Optional[int] = 1) -> List[Tuple[str, str, str]]:
logger.warning("[EmojiAPI] 随机获取表情包失败,没有一个可以成功处理")
return []
logger.info(f"[EmojiAPI] 成功获取 {len(results)} 个随机表情包")
logger.debug(f"[EmojiAPI] 成功获取 {len(results)} 个随机表情包")
return results
except Exception as e:

View File

@ -54,12 +54,9 @@ class EmojiAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# sourcery skip: assign-if-exp, introduce-default-else, swap-if-else-branches, use-named-expression
"""执行表情动作"""
logger.info(f"{self.log_prefix} 决定发送表情")
try:
# 1. 获取发送表情的原因
reason = self.action_data.get("reason", "表达当前情绪")
logger.info(f"{self.log_prefix} 发送表情原因: {reason}")
# 2. 随机获取20个表情包
sampled_emojis = await emoji_api.get_random(30)
@ -129,7 +126,7 @@ class EmojiAction(BaseAction):
# 6. 根据选择的情感匹配表情包
if chosen_emotion in emotion_map:
emoji_base64, emoji_description = random.choice(emotion_map[chosen_emotion])
logger.info(f"{self.log_prefix} 找到匹配情感 '{chosen_emotion}' 的表情包: {emoji_description}")
logger.info(f"{self.log_prefix} 发送表情包[{chosen_emotion}],原因: {reason}")
else:
logger.warning(
f"{self.log_prefix} LLM选择的情感 '{chosen_emotion}' 不在可用列表中, 将随机选择一个表情包"
@ -140,7 +137,6 @@ class EmojiAction(BaseAction):
success = await self.send_emoji(emoji_base64)
if success:
logger.info(f"{self.log_prefix} 成功发送表情包")
# 存储动作信息
await self.store_action_info(
action_build_into_prompt=True,

View File

@ -104,9 +104,7 @@ class BuildRelationAction(BaseAction):
associated_types = ["text"]
async def execute(self) -> Tuple[bool, str]:
# sourcery skip: assign-if-exp, introduce-default-else, swap-if-else-branches, use-named-expression
"""执行关系动作"""
logger.info(f"{self.log_prefix} 决定添加记忆")
try:
# 1. 获取构建关系的原因