pull/1273/head
SengokuCola 2025-09-28 02:04:49 +08:00
commit cec2c1830e
30 changed files with 203 additions and 188 deletions

View File

@ -1,26 +1,19 @@
import random
from typing import List, Tuple, Type, Any
from typing import List, Tuple, Type
from src.plugin_system import (
BasePlugin,
register_plugin,
BaseAction,
BaseCommand,
BaseTool,
ComponentInfo,
ActionActivationType,
ConfigField,
BaseEventHandler,
EventType,
MaiMessages,
ToolParamType,
ReplyContentType,
emoji_api,
)
from maim_message import Seg
from src.config.config import global_config
from src.common.logger import get_logger
logger = get_logger("emoji_manage_plugin")
class AddEmojiCommand(BaseCommand):
command_name = "add_emoji"
command_description = "添加表情包"
@ -29,7 +22,7 @@ class AddEmojiCommand(BaseCommand):
async def execute(self) -> Tuple[bool, str, bool]:
# 查找消息中的表情包
# logger.info(f"查找消息中的表情包: {self.message.message_segment}")
emoji_base64_list = self.find_and_return_emoji_in_message(self.message.message_segment)
if not emoji_base64_list:
@ -51,7 +44,7 @@ class AddEmojiCommand(BaseCommand):
emotions = result.get("emotions", [])
replaced = result.get("replaced", False)
result_msg = f"表情包 {i+1} 注册成功{'(替换旧表情包)' if replaced else '(新增表情包)'}"
result_msg = f"表情包 {i + 1} 注册成功{'(替换旧表情包)' if replaced else '(新增表情包)'}"
if description:
result_msg += f"\n描述: {description}"
if emotions:
@ -61,11 +54,11 @@ class AddEmojiCommand(BaseCommand):
else:
fail_count += 1
error_msg = result.get("message", "注册失败")
results.append(f"表情包 {i+1} 注册失败: {error_msg}")
results.append(f"表情包 {i + 1} 注册失败: {error_msg}")
except Exception as e:
fail_count += 1
results.append(f"表情包 {i+1} 注册时发生错误: {str(e)}")
results.append(f"表情包 {i + 1} 注册时发生错误: {str(e)}")
# 构建返回消息
total_count = success_count + fail_count
@ -140,6 +133,7 @@ class AddEmojiCommand(BaseCommand):
emoji_base64_list.extend(self.find_and_return_emoji_in_message(seg.data))
return emoji_base64_list
class ListEmojiCommand(BaseCommand):
"""列表表情包Command - 响应/emoji list命令"""
@ -156,6 +150,7 @@ class ListEmojiCommand(BaseCommand):
# 解析命令参数
import re
match = re.match(r"^/emoji list(?:\s+(\d+))?$", self.message.raw_message)
max_count = 10 # 默认显示10个
if match and match.group(1):
@ -195,7 +190,7 @@ class ListEmojiCommand(BaseCommand):
display_emojis = all_emojis[:max_count]
message_lines.append(f"\n📋 显示前 {len(display_emojis)} 个表情包:")
for i, (emoji_base64, description, emotion) in enumerate(display_emojis, 1):
for i, (_, description, emotion) in enumerate(display_emojis, 1):
# 截断过长的描述
short_desc = description[:50] + "..." if len(description) > 50 else description
message_lines.append(f"{i}. {short_desc} [{emotion}]")
@ -257,7 +252,7 @@ class DeleteEmojiCommand(BaseCommand):
count_after = result.get("count_after", 0)
emotions = result.get("emotions", [])
result_msg = f"表情包 {i+1} 删除成功"
result_msg = f"表情包 {i + 1} 删除成功"
if description:
result_msg += f"\n描述: {description}"
if emotions:
@ -268,11 +263,11 @@ class DeleteEmojiCommand(BaseCommand):
else:
fail_count += 1
error_msg = result.get("message", "删除失败")
results.append(f"表情包 {i+1} 删除失败: {error_msg}")
results.append(f"表情包 {i + 1} 删除失败: {error_msg}")
except Exception as e:
fail_count += 1
results.append(f"表情包 {i+1} 删除时发生错误: {str(e)}")
results.append(f"表情包 {i + 1} 删除时发生错误: {str(e)}")
# 构建返回消息
total_count = success_count + fail_count
@ -401,4 +396,4 @@ class EmojiManagePlugin(BasePlugin):
(AddEmojiCommand.get_command_info(), AddEmojiCommand),
(ListEmojiCommand.get_command_info(), ListEmojiCommand),
(DeleteEmojiCommand.get_command_info(), DeleteEmojiCommand),
]
]

View File

@ -16,7 +16,6 @@ from src.chat.brain_chat.brain_planner import BrainPlanner
from src.chat.planner_actions.action_modifier import ActionModifier
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.heart_flow.hfc_utils import CycleDetail
from src.chat.heart_flow.hfc_utils import send_typing, stop_typing
from src.chat.express.expression_learner import expression_learner_manager
from src.person_info.person_info import Person
from src.plugin_system.base.component_types import EventType, ActionInfo
@ -96,7 +95,6 @@ class BrainChatting:
self.last_read_time = time.time() - 2
self.more_plan = False
async def start(self):
"""检查是否需要启动主循环,如果未激活则启动。"""
@ -171,10 +169,8 @@ class BrainChatting:
if len(recent_messages_list) >= 1:
self.last_read_time = time.time()
await self._observe(
recent_messages_list=recent_messages_list
)
await self._observe(recent_messages_list=recent_messages_list)
else:
# Normal模式消息数量不足等待
await asyncio.sleep(0.2)
@ -233,11 +229,11 @@ class BrainChatting:
async def _observe(
self, # interest_value: float = 0.0,
recent_messages_list: Optional[List["DatabaseMessages"]] = None
recent_messages_list: Optional[List["DatabaseMessages"]] = None,
) -> bool: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
if recent_messages_list is None:
recent_messages_list = []
reply_text = "" # 初始化reply_text变量避免UnboundLocalError
_reply_text = "" # 初始化reply_text变量避免UnboundLocalError
async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()):
await self.expression_learner.trigger_learning_for_chat()
@ -334,7 +330,7 @@ class BrainChatting:
"taken_time": time.time(),
}
)
reply_text = reply_text_from_reply
_reply_text = reply_text_from_reply
else:
# 没有回复信息构建纯动作的loop_info
loop_info = {
@ -347,7 +343,7 @@ class BrainChatting:
"taken_time": time.time(),
},
}
reply_text = action_reply_text
_reply_text = action_reply_text
self.end_cycle(loop_info, cycle_timers)
self.print_cycle_info(cycle_timers)
@ -484,7 +480,6 @@ class BrainChatting:
"""执行单个动作的通用函数"""
try:
with Timer(f"动作{action_planner_info.action_type}", cycle_timers):
if action_planner_info.action_type == "no_reply":
# 直接处理no_action逻辑不再通过动作系统
reason = action_planner_info.reasoning or "选择不回复"
@ -517,7 +512,9 @@ class BrainChatting:
if not success or not llm_response or not llm_response.reply_set:
if action_planner_info.action_message:
logger.info(f"{action_planner_info.action_message.processed_plain_text} 的回复生成失败")
logger.info(
f"{action_planner_info.action_message.processed_plain_text} 的回复生成失败"
)
else:
logger.info("回复生成失败")
return {"action_type": "reply", "success": False, "reply_text": "", "loop_info": None}

View File

@ -307,7 +307,9 @@ class BrainPlanner:
if chat_target_info:
# 构建聊天上下文描述
chat_context_description = f"你正在和 {chat_target_info.person_name or chat_target_info.user_nickname or '对方'} 聊天中"
chat_context_description = (
f"你正在和 {chat_target_info.person_name or chat_target_info.user_nickname or '对方'} 聊天中"
)
# 构建动作选项块
action_options_block = await self._build_action_options_block(current_available_actions)

View File

@ -10,11 +10,14 @@ from src.common.logger import get_logger
from src.common.database.database_model import Expression
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config, global_config
from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_chat_inclusive, build_anonymous_messages, build_bare_messages
from src.chat.utils.chat_message_builder import (
get_raw_msg_by_timestamp_with_chat_inclusive,
build_anonymous_messages,
build_bare_messages,
)
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from json_repair import repair_json
from src.chat.utils.utils import get_embedding
MAX_EXPRESSION_COUNT = 300
@ -99,7 +102,9 @@ class ExpressionLearner:
self.last_learning_time: float = time.time()
# 学习参数
_, self.enable_learning, self.learning_intensity = global_config.expression.get_expression_config_for_chat(self.chat_id)
_, self.enable_learning, self.learning_intensity = global_config.expression.get_expression_config_for_chat(
self.chat_id
)
self.min_messages_for_learning = 15 / self.learning_intensity # 触发学习所需的最少消息数
self.min_learning_interval = 150 / self.learning_intensity
@ -237,17 +242,42 @@ class ExpressionLearner:
return []
learnt_expressions = res
learnt_expressions_str = ""
for _chat_id, situation, style, context, context_words, full_context, full_context_embedding in learnt_expressions:
for (
_chat_id,
situation,
style,
_context,
_context_words,
_full_context,
_full_context_embedding,
) in learnt_expressions:
learnt_expressions_str += f"{situation}->{style}\n"
logger.info(f"{self.chat_name} 学习到表达风格:\n{learnt_expressions_str}")
# 按chat_id分组
chat_dict: Dict[str, List[Dict[str, Any]]] = {}
for chat_id, situation, style, context, context_words, full_context, full_context_embedding in learnt_expressions:
for (
chat_id,
situation,
style,
context,
context_words,
full_context,
full_context_embedding,
) in learnt_expressions:
if chat_id not in chat_dict:
chat_dict[chat_id] = []
chat_dict[chat_id].append({"situation": situation, "style": style, "context": context, "context_words": context_words, "full_context": full_context, "full_context_embedding": full_context_embedding})
chat_dict[chat_id].append(
{
"situation": situation,
"style": style,
"context": context,
"context_words": context_words,
"full_context": full_context,
"full_context_embedding": full_context_embedding,
}
)
current_time = time.time()
@ -300,11 +330,13 @@ class ExpressionLearner:
expr.delete_instance()
return learnt_expressions
async def match_expression_context(self, expression_pairs: List[Tuple[str, str]], random_msg_match_str: str) -> List[Tuple[str, str, str]]:
async def match_expression_context(
self, expression_pairs: List[Tuple[str, str]], random_msg_match_str: str
) -> List[Tuple[str, str, str]]:
# 为expression_pairs逐个条目赋予编号并构建成字符串
numbered_pairs = []
for i, (situation, style) in enumerate(expression_pairs, 1):
numbered_pairs.append(f"{i}. 当\"{situation}\"时,使用\"{style}\"")
numbered_pairs.append(f'{i}. 当"{situation}"时,使用"{style}"')
expression_pairs_str = "\n".join(numbered_pairs)
@ -319,20 +351,20 @@ class ExpressionLearner:
print(f"match_expression_context_prompt: {prompt}")
print(f"random_msg_match_str: {response}")
# 解析JSON响应
match_responses = []
try:
response = response.strip()
# 检查是否已经是标准JSON数组格式
if response.startswith('[') and response.endswith(']'):
if response.startswith("[") and response.endswith("]"):
match_responses = json.loads(response)
else:
# 尝试直接解析多个JSON对象
try:
# 如果是多个JSON对象用逗号分隔包装成数组
if response.startswith('{') and not response.startswith('['):
response = '[' + response + ']'
if response.startswith("{") and not response.startswith("["):
response = "[" + response + "]"
match_responses = json.loads(response)
else:
# 使用repair_json处理响应
@ -394,7 +426,9 @@ class ExpressionLearner:
return matched_expressions
async def learn_expression(self, num: int = 10) -> Optional[List[Tuple[str, str, str, List[str], str, List[float]]]]:
async def learn_expression(
self, num: int = 10
) -> Optional[List[Tuple[str, str, str, List[str], str, List[float]]]]:
"""从指定聊天流学习表达方式
Args:
@ -416,11 +450,10 @@ class ExpressionLearner:
if not random_msg or random_msg == []:
return None
# 转化成str
chat_id: str = random_msg[0].chat_id
_chat_id: str = random_msg[0].chat_id
# random_msg_str: str = build_readable_messages(random_msg, timestamp_mode="normal")
random_msg_str: str = await build_anonymous_messages(random_msg)
random_msg_match_str: str = await build_bare_messages(random_msg)
prompt: str = await global_prompt_manager.format_prompt(
prompt,
@ -440,24 +473,31 @@ class ExpressionLearner:
expressions: List[Tuple[str, str]] = self.parse_expression_response(response)
matched_expressions: List[Tuple[str, str, str]] = await self.match_expression_context(expressions, random_msg_match_str)
matched_expressions: List[Tuple[str, str, str]] = await self.match_expression_context(
expressions, random_msg_match_str
)
split_matched_expressions: List[Tuple[str, str, str, List[str]]] = self.split_expression_context(
matched_expressions
)
split_matched_expressions: List[Tuple[str, str, str, List[str]]] = self.split_expression_context(matched_expressions)
split_matched_expressions_w_emb = []
full_context_embedding: List[float] = await self.get_full_context_embedding(random_msg_match_str)
for situation, style, context, context_words in split_matched_expressions:
split_matched_expressions_w_emb.append((self.chat_id, situation, style, context, context_words, random_msg_match_str,full_context_embedding))
for situation, style, context, context_words in split_matched_expressions:
split_matched_expressions_w_emb.append(
(self.chat_id, situation, style, context, context_words, random_msg_match_str, full_context_embedding)
)
return split_matched_expressions_w_emb
async def get_full_context_embedding(self, context: str) -> List[float]:
embedding, _ = await self.embedding_model.get_embedding(context)
return embedding
def split_expression_context(self, matched_expressions: List[Tuple[str, str, str]]) -> List[Tuple[str, str, str, List[str]]]:
def split_expression_context(
self, matched_expressions: List[Tuple[str, str, str]]
) -> List[Tuple[str, str, str, List[str]]]:
"""
对matched_expressions中的context部分进行jieba分词

View File

@ -114,10 +114,10 @@ class ExpressionSelector:
def get_related_chat_ids(self, chat_id: str) -> List[str]:
"""根据expression_groups配置获取与当前chat_id相关的所有chat_id包括自身"""
groups = global_config.expression.expression_groups
# 检查是否存在全局共享组(包含"*"的组)
global_group_exists = any("*" in group for group in groups)
if global_group_exists:
# 如果存在全局共享组则返回所有可用的chat_id
all_chat_ids = set()
@ -126,7 +126,7 @@ class ExpressionSelector:
if chat_id_candidate := self._parse_stream_config_to_chat_id(stream_config_str):
all_chat_ids.add(chat_id_candidate)
return list(all_chat_ids) if all_chat_ids else [chat_id]
# 否则使用现有的组逻辑
for group in groups:
group_chat_ids = []

View File

@ -43,4 +43,4 @@ class FrequencyControlManager:
# 创建全局实例
frequency_control_manager = FrequencyControlManager()
frequency_control_manager = FrequencyControlManager()

View File

@ -208,7 +208,11 @@ class HeartFChatting:
# *控制频率用
if mentioned_message:
await self._observe(recent_messages_list=recent_messages_list, force_reply_message=mentioned_message)
elif random.random() < global_config.chat.talk_value * frequency_control_manager.get_or_create_frequency_control(self.stream_id).get_talk_frequency_adjust():
elif (
random.random()
< global_config.chat.talk_value
* frequency_control_manager.get_or_create_frequency_control(self.stream_id).get_talk_frequency_adjust()
):
await self._observe(recent_messages_list=recent_messages_list)
else:
# 没有提到继续保持沉默等待5秒防止频繁触发
@ -278,9 +282,8 @@ class HeartFChatting:
recent_messages_list = []
reply_text = "" # 初始化reply_text变量避免UnboundLocalError
start_time = time.time()
if s4u_config.enable_s4u:
await send_typing()
@ -356,7 +359,7 @@ class HeartFChatting:
available_actions=available_actions,
)
)
logger.info(
f"{self.log_prefix} 决定执行{len(action_to_use_info)}个动作: {' '.join([a.action_type for a in action_to_use_info])}"
)
@ -418,7 +421,7 @@ class HeartFChatting:
},
}
reply_text = action_reply_text
self.end_cycle(loop_info, cycle_timers)
self.print_cycle_info(cycle_timers)
@ -429,11 +432,6 @@ class HeartFChatting:
else:
await asyncio.sleep(0.1)
"""S4U内容暂时保留"""
if s4u_config.enable_s4u:
await stop_typing()

View File

@ -1,10 +1,8 @@
import asyncio
import re
import traceback
from typing import Tuple, TYPE_CHECKING
from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage
from src.chat.heart_flow.heartflow import heartflow
@ -74,7 +72,7 @@ class HeartFCMessageReceiver:
await self.storage.store_message(message, chat)
heartflow_chat: HeartFChatting = await heartflow.get_or_create_heartflow_chat(chat.stream_id) # type: ignore
_heartflow_chat: HeartFChatting = await heartflow.get_or_create_heartflow_chat(chat.stream_id) # type: ignore
# 3. 日志记录
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
@ -102,7 +100,7 @@ class HeartFCMessageReceiver:
replace_bot_name=True,
)
# if not processed_plain_text:
# print(message)
# print(message)
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}") # type: ignore

View File

@ -8,7 +8,7 @@ from maim_message import UserInfo, Seg, GroupInfo
from src.common.logger import get_logger
from src.config.config import global_config
from src.mood.mood_manager import mood_manager # 导入情绪管理器
from src.chat.message_receive.chat_stream import get_chat_manager, ChatStream
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.message_receive.message import MessageRecv, MessageRecvS4U
from src.chat.message_receive.storage import MessageStorage
from src.chat.heart_flow.heartflow_message_processor import HeartFCMessageReceiver

View File

@ -343,7 +343,6 @@ class ActionPlanner:
interest=interest,
plan_style=global_config.personality.plan_style,
)
return prompt, message_id_list
except Exception as e:
@ -508,9 +507,7 @@ class ActionPlanner:
action.action_data = action.action_data or {}
action.action_data["loop_start_time"] = loop_start_time
logger.debug(
f"{self.log_prefix}规划器选择了{len(actions)}个动作: {' '.join([a.action_type for a in actions])}"
)
logger.debug(f"{self.log_prefix}规划器选择了{len(actions)}个动作: {' '.join([a.action_type for a in actions])}")
return actions

View File

@ -28,7 +28,7 @@ from src.chat.utils.chat_message_builder import (
from src.chat.express.expression_selector import expression_selector
# from src.chat.memory_system.memory_activator import MemoryActivator
from src.person_info.person_info import Person, is_person_known
from src.person_info.person_info import Person
from src.plugin_system.base.component_types import ActionInfo, EventType
from src.plugin_system.apis import llm_api
@ -43,6 +43,7 @@ init_rewrite_prompt()
logger = get_logger("replyer")
class DefaultReplyer:
def __init__(
self,
@ -216,7 +217,7 @@ class DefaultReplyer:
traceback.print_exc()
return False, llm_response
#移动到 relation插件中构建
# 移动到 relation插件中构建
# async def build_relation_info(self, chat_content: str, sender: str, person_list: List[Person]):
# if not global_config.relationship.enable_relationship:
# return ""
@ -278,9 +279,7 @@ class DefaultReplyer:
expression_habits_block = ""
expression_habits_title = ""
if style_habits_str.strip():
expression_habits_title = (
"在回复时,你可以参考以下的语言习惯,不要生硬使用:"
)
expression_habits_title = "在回复时,你可以参考以下的语言习惯,不要生硬使用:"
expression_habits_block += f"{style_habits_str}\n"
return f"{expression_habits_title}\n{expression_habits_block}", selected_ids
@ -510,7 +509,6 @@ class DefaultReplyer:
--------------------------------
"""
# 构建背景对话 prompt
all_dialogue_prompt = ""
if message_list_before_now:
@ -536,7 +534,6 @@ class DefaultReplyer:
time_block: str,
chat_target_1: str,
chat_target_2: str,
identity_block: str,
sender: str,
target: str,
@ -774,13 +771,9 @@ class DefaultReplyer:
if sender:
if is_group_chat:
reply_target_block = (
f"现在{sender}说的:{target}。引起了你的注意"
)
reply_target_block = f"现在{sender}说的:{target}。引起了你的注意"
else: # private chat
reply_target_block = (
f"现在{sender}说的:{target}。引起了你的注意"
)
reply_target_block = f"现在{sender}说的:{target}。引起了你的注意"
else:
reply_target_block = ""
@ -1061,6 +1054,3 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
pool.pop(idx)
break
return selected

View File

@ -1,9 +1,7 @@
from src.chat.utils.prompt_builder import Prompt
# from src.chat.memory_system.memory_activator import MemoryActivator
def init_lpmm_prompt():
Prompt(
"""
@ -20,5 +18,3 @@ If you need to use the search tool, please directly call the function "lpmm_sear
""",
name="lpmm_get_knowledge_prompt",
)

View File

@ -1,9 +1,7 @@
from src.chat.utils.prompt_builder import Prompt
# from src.chat.memory_system.memory_activator import MemoryActivator
def init_rewrite_prompt():
Prompt("你正在qq群里聊天下面是群里正在聊的内容:", "chat_target_group1")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
@ -31,4 +29,4 @@ def init_rewrite_prompt():
现在你说
""",
"default_expressor_prompt",
)
)

View File

@ -859,7 +859,6 @@ async def build_anonymous_messages(messages: List[DatabaseMessages]) -> str:
# 处理图片ID
content = process_pic_ids(content)
anon_name = get_anon_name(platform, user_id)
# print(f"anon_name:{anon_name}")
@ -945,11 +944,12 @@ async def build_bare_messages(messages: List[DatabaseMessages]) -> str:
# 获取纯文本内容
content = msg.processed_plain_text or ""
# 处理图片ID
pic_pattern = r"\[picid:[^\]]+\]"
def replace_pic_id(match):
return "[图片]"
content = re.sub(pic_pattern, replace_pic_id, content)
# 处理用户引用格式,移除回复和@标记

View File

@ -16,4 +16,4 @@ class LLMGenerationDataModel(BaseDataModel):
tool_calls: Optional[List["ToolCall"]] = None
prompt: Optional[str] = None
selected_expressions: Optional[List[int]] = None
reply_set: Optional["ReplySetModel"] = None
reply_set: Optional["ReplySetModel"] = None

View File

@ -748,11 +748,14 @@ def check_field_constraints():
logger.exception(f"检查字段约束时出错: {e}")
return inconsistencies
def fix_image_id():
"""
修复表情包的 image_id 字段
"""
import uuid
try:
with db:
for img in Images.select():
@ -763,6 +766,7 @@ def fix_image_id():
except Exception as e:
logger.exception(f"修复 image_id 时出错: {e}")
# 模块加载时调用初始化函数
initialize_database(sync_constraints=True)
fix_image_id()
fix_image_id()

View File

@ -46,13 +46,13 @@ class PersonalityConfig(ConfigBase):
interest: str = ""
"""兴趣"""
plan_style: str = ""
"""说话规则,行为风格"""
visual_style: str = ""
"""图片提示词"""
private_plan_style: str = ""
"""私聊说话规则,行为风格"""
@ -86,7 +86,7 @@ class ChatConfig(ConfigBase):
planner_smooth: float = 3
"""规划器平滑增大数值会减小planner负荷略微降低反应速度推荐2-50为关闭必须大于等于0"""
talk_value: float = 1
"""思考频率"""
@ -302,6 +302,7 @@ class EmojiConfig(ConfigBase):
filtration_prompt: str = "符合公序良俗"
"""表情包过滤要求"""
@dataclass
class KeywordRuleConfig(ConfigBase):
"""关键词规则配置类"""

View File

@ -85,4 +85,4 @@ class ModelAttemptFailed(Exception):
self.original_exception = original_exception
def __str__(self):
return self.message
return self.message

View File

@ -182,7 +182,7 @@ def _process_delta(
if delta.text:
fc_delta_buffer.write(delta.text)
# 处理 thoughtGemini 的特殊字段)
for c in getattr(delta, "candidates", []):
if c.content and getattr(c.content, "parts", None):
@ -190,7 +190,7 @@ def _process_delta(
if getattr(p, "thought", False) and getattr(p, "text", None):
# 把 thought 写入 buffer避免 resp.content 永远为空
fc_delta_buffer.write(p.text)
if delta.function_calls: # 为什么不用hasattr呢是因为这个属性一定有即使是个空的
for call in delta.function_calls:
try:
@ -250,11 +250,8 @@ def _build_stream_api_resp(
" 可能会对回复内容造成影响,建议修改模型 max_tokens 配置!"
)
else:
logger.warning(
"⚠ Gemini 响应因达到 max_tokens 限制被截断,\n"
" 请修改模型 max_tokens 配置!"
)
logger.warning("⚠ Gemini 响应因达到 max_tokens 限制被截断,\n 请修改模型 max_tokens 配置!")
if not resp.content and not resp.tool_calls:
raise EmptyResponseException()
@ -387,10 +384,7 @@ def _default_normal_response_parser(
" 可能会对回复内容造成影响,建议修改模型 max_tokens 配置!"
)
else:
logger.warning(
"⚠ Gemini 响应因达到 max_tokens 限制被截断,\n"
" 请修改模型 max_tokens 配置!"
)
logger.warning("⚠ Gemini 响应因达到 max_tokens 限制被截断,\n 请修改模型 max_tokens 配置!")
return api_response, _usage_record
except Exception as e:
@ -447,7 +441,7 @@ class GeminiClient(BaseClient):
logger.warning(
f"无效的 thinking_budget 值 {extra_params['thinking_budget']},将使用模型自动预算模式 {tb}"
)
# 优先尝试精确匹配
if model_id in THINKING_BUDGET_LIMITS:
limits = THINKING_BUDGET_LIMITS[model_id]
@ -532,7 +526,7 @@ class GeminiClient(BaseClient):
tools = _convert_tool_options(tool_options) if tool_options else None
# 解析并裁剪 thinking_budget
tb = self.clamp_thinking_budget(extra_params, model_info.model_identifier)
# 将response_format转换为Gemini API所需的格式
generation_config_dict = {
"max_output_tokens": max_tokens,

View File

@ -487,7 +487,7 @@ class OpenaiClient(BaseClient):
req_task.cancel()
raise ReqAbortException("请求被外部信号中断")
await asyncio.sleep(0.1) # 等待0.5秒后再次检查任务&中断信号量状态
# logger.
logger.debug(f"OpenAI API响应(非流式): {req_task.result()}")
@ -511,7 +511,7 @@ class OpenaiClient(BaseClient):
)
# logger.debug(f"OpenAI API响应: {resp}")
return resp
async def get_embedding(

View File

@ -149,7 +149,7 @@ class LLMRequest:
logger.debug(f"LLM请求总耗时: {time.time() - start_time}")
logger.debug(f"LLM生成内容: {response}")
content = response.content
reasoning_content = response.reasoning_content or ""
tool_calls = response.tool_calls

View File

@ -44,7 +44,7 @@ def init_prompt():
""",
"get_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
@ -103,9 +103,7 @@ class ChatMood:
if random.random() > update_probability:
return
logger.debug(
f"{self.log_prefix} 更新情绪状态,更新概率: {update_probability:.2f}"
)
logger.debug(f"{self.log_prefix} 更新情绪状态,更新概率: {update_probability:.2f}")
message_time: float = message.message_info.time # type: ignore
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
@ -154,12 +152,12 @@ class ChatMood:
self.mood_state = response
self.last_change_time = message_time
async def get_mood(self) -> str:
self.regression_count = 0
current_time = time.time()
logger.info(f"{self.log_prefix} 获取情绪状态")
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
@ -207,7 +205,7 @@ class ChatMood:
self.mood_state = response
self.last_change_time = current_time
return response
async def regress_mood(self):

View File

@ -17,7 +17,9 @@ from src.config.config import global_config, model_config
logger = get_logger("person_info")
relation_selection_model = LLMRequest(model_set=model_config.model_task_config.utils_small, request_type="relation_selection")
relation_selection_model = LLMRequest(
model_set=model_config.model_task_config.utils_small, request_type="relation_selection"
)
def get_person_id(platform: str, user_id: Union[int, str]) -> str:
@ -91,9 +93,10 @@ def extract_categories_from_response(response: str) -> list[str]:
"""从response中提取所有<>包裹的内容"""
if not isinstance(response, str):
return []
import re
pattern = r'<([^<>]+)>'
pattern = r"<([^<>]+)>"
matches = re.findall(pattern, response)
return matches
@ -420,7 +423,7 @@ class Person:
except Exception as e:
logger.error(f"同步用户 {self.person_id} 信息到数据库时出错: {e}")
async def build_relationship(self,chat_content:str = "",info_type = ""):
async def build_relationship(self, chat_content: str = "", info_type=""):
if not self.is_known:
return ""
# 构建points文本
@ -433,7 +436,7 @@ class Person:
points_text = ""
category_list = self.get_all_category()
if chat_content:
prompt = f"""当前聊天内容:
{chat_content}
@ -449,11 +452,13 @@ class Person:
# print(prompt)
# print(response)
category_list = extract_categories_from_response(response)
if "none" not in category_list:
if "none" not in category_list:
for category in category_list:
random_memory = self.get_random_memory_by_category(category, 2)
if random_memory:
random_memory_str = "\n".join([get_memory_content_from_memory(memory) for memory in random_memory])
random_memory_str = "\n".join(
[get_memory_content_from_memory(memory) for memory in random_memory]
)
points_text = f"有关 {category} 的内容:{random_memory_str}"
break
elif info_type:
@ -469,15 +474,16 @@ class Person:
# print(prompt)
# print(response)
category_list = extract_categories_from_response(response)
if "none" not in category_list:
if "none" not in category_list:
for category in category_list:
random_memory = self.get_random_memory_by_category(category, 3)
if random_memory:
random_memory_str = "\n".join([get_memory_content_from_memory(memory) for memory in random_memory])
random_memory_str = "\n".join(
[get_memory_content_from_memory(memory) for memory in random_memory]
)
points_text = f"有关 {category} 的内容:{random_memory_str}"
break
else:
for category in category_list:
random_memory = self.get_random_memory_by_category(category, 1)[0]
if random_memory:

View File

@ -12,7 +12,6 @@ import random
import base64
import os
import uuid
import time
from typing import Optional, Tuple, List, Dict, Any
from src.common.logger import get_logger
@ -358,7 +357,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
"description": None,
"emotions": None,
"replaced": None,
"hash": None
"hash": None,
}
# 3. 确保emoji目录存在
@ -368,19 +367,21 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
if not filename:
# 基于时间戳、微秒和短base64生成唯一文件名
import time
timestamp = int(time.time())
microseconds = int(time.time() * 1000000) % 1000000 # 添加微秒级精度
# 生成12位随机标识符使用base64编码增加随机性
import random
random_bytes = random.getrandbits(72).to_bytes(9, 'big') # 72位 = 9字节 = 12位base64
short_id = base64.b64encode(random_bytes).decode('ascii')[:12].rstrip('=')
random_bytes = random.getrandbits(72).to_bytes(9, "big") # 72位 = 9字节 = 12位base64
short_id = base64.b64encode(random_bytes).decode("ascii")[:12].rstrip("=")
# 确保base64编码适合文件名替换/和-
short_id = short_id.replace('/', '_').replace('+', '-')
short_id = short_id.replace("/", "_").replace("+", "-")
filename = f"emoji_{timestamp}_{microseconds}_{short_id}"
# 确保文件名有扩展名
if not filename.lower().endswith(('.jpg', '.jpeg', '.png', '.gif')):
if not filename.lower().endswith((".jpg", ".jpeg", ".png", ".gif")):
filename = f"{filename}.png" # 默认使用png格式
# 检查文件名是否已存在,如果存在则重新生成短标识符
@ -390,14 +391,15 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
while os.path.exists(temp_file_path) and attempts < max_attempts:
# 重新生成短标识符
import random
random_bytes = random.getrandbits(48).to_bytes(6, 'big')
short_id = base64.b64encode(random_bytes).decode('ascii')[:8].rstrip('=')
short_id = short_id.replace('/', '_').replace('+', '-')
random_bytes = random.getrandbits(48).to_bytes(6, "big")
short_id = base64.b64encode(random_bytes).decode("ascii")[:8].rstrip("=")
short_id = short_id.replace("/", "_").replace("+", "-")
# 分离文件名和扩展名,重新生成文件名
name_part, ext = os.path.splitext(filename)
# 去掉原来的标识符,添加新的
base_name = name_part.rsplit('_', 1)[0] # 移除最后一个_后的部分
base_name = name_part.rsplit("_", 1)[0] # 移除最后一个_后的部分
filename = f"{base_name}_{short_id}{ext}"
temp_file_path = os.path.join(EMOJI_DIR, filename)
attempts += 1
@ -406,7 +408,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
if os.path.exists(temp_file_path):
uuid_short = str(uuid.uuid4())[:8]
name_part, ext = os.path.splitext(filename)
base_name = name_part.rsplit('_', 1)[0]
base_name = name_part.rsplit("_", 1)[0]
filename = f"{base_name}_{uuid_short}{ext}"
temp_file_path = os.path.join(EMOJI_DIR, filename)
@ -428,7 +430,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
"description": None,
"emotions": None,
"replaced": None,
"hash": None
"hash": None,
}
# 5. 保存base64图片到emoji目录
@ -443,7 +445,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
"description": None,
"emotions": None,
"replaced": None,
"hash": None
"hash": None,
}
logger.debug(f"[EmojiAPI] 图片已保存到临时文件: {temp_file_path}")
@ -456,7 +458,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
"description": None,
"emotions": None,
"replaced": None,
"hash": None
"hash": None,
}
# 6. 调用注册方法
@ -483,8 +485,8 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
# 通过文件名查找新注册的表情包(注意:文件名在注册后可能已经改变)
for emoji_obj in reversed(emoji_manager.emoji_objects):
if not emoji_obj.is_deleted and (
emoji_obj.filename == filename or # 直接匹配
(hasattr(emoji_obj, 'full_path') and filename in emoji_obj.full_path) # 路径包含匹配
emoji_obj.filename == filename # 直接匹配
or (hasattr(emoji_obj, "full_path") and filename in emoji_obj.full_path) # 路径包含匹配
):
new_emoji_info = emoji_obj
break
@ -501,7 +503,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
"description": description,
"emotions": emotions,
"replaced": replaced,
"hash": emoji_hash
"hash": emoji_hash,
}
else:
return {
@ -510,7 +512,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
"description": None,
"emotions": None,
"replaced": None,
"hash": None
"hash": None,
}
except Exception as e:
@ -521,7 +523,7 @@ async def register_emoji(image_base64: str, filename: Optional[str] = None) -> D
"description": None,
"emotions": None,
"replaced": None,
"hash": None
"hash": None,
}
@ -585,16 +587,16 @@ async def delete_emoji(emoji_hash: str) -> Dict[str, Any]:
"count_before": count_before,
"count_after": count_after,
"description": description,
"emotions": emotions
"emotions": emotions,
}
else:
return {
"success": False,
"message": f"表情包删除失败,可能因为哈希值不存在或删除过程出错",
"message": "表情包删除失败,可能因为哈希值不存在或删除过程出错",
"count_before": count_before,
"count_after": count_after,
"description": None,
"emotions": None
"emotions": None,
}
except Exception as e:
@ -605,7 +607,7 @@ async def delete_emoji(emoji_hash: str) -> Dict[str, Any]:
"count_before": None,
"count_after": None,
"description": None,
"emotions": None
"emotions": None,
}
@ -659,7 +661,7 @@ async def delete_emoji_by_description(description: str, exact_match: bool = Fals
"message": f"未找到匹配描述 '{description}' 的表情包",
"deleted_count": 0,
"deleted_hashes": [],
"matched_count": 0
"matched_count": 0,
}
# 删除匹配的表情包
@ -681,7 +683,7 @@ async def delete_emoji_by_description(description: str, exact_match: bool = Fals
"message": f"成功删除 {deleted_count} 个表情包 (匹配到 {matched_count} 个)",
"deleted_count": deleted_count,
"deleted_hashes": deleted_hashes,
"matched_count": matched_count
"matched_count": matched_count,
}
else:
return {
@ -689,7 +691,7 @@ async def delete_emoji_by_description(description: str, exact_match: bool = Fals
"message": f"匹配到 {matched_count} 个表情包,但删除全部失败",
"deleted_count": 0,
"deleted_hashes": [],
"matched_count": matched_count
"matched_count": matched_count,
}
except Exception as e:
@ -699,5 +701,5 @@ async def delete_emoji_by_description(description: str, exact_match: bool = Fals
"message": f"删除过程中发生错误: {str(e)}",
"deleted_count": 0,
"deleted_hashes": [],
"matched_count": 0
"matched_count": 0,
}

View File

@ -3,13 +3,14 @@ from src.chat.frequency_control.frequency_control import frequency_control_manag
logger = get_logger("frequency_api")
def get_current_talk_frequency(chat_id: str) -> float:
return frequency_control_manager.get_or_create_frequency_control(chat_id).get_talk_frequency_adjust()
def set_talk_frequency_adjust(chat_id: str, talk_frequency_adjust: float) -> None:
frequency_control_manager.get_or_create_frequency_control(
chat_id
).set_talk_frequency_adjust(talk_frequency_adjust)
frequency_control_manager.get_or_create_frequency_control(chat_id).set_talk_frequency_adjust(talk_frequency_adjust)
def get_talk_frequency_adjust(chat_id: str) -> float:
return frequency_control_manager.get_or_create_frequency_control(chat_id).get_talk_frequency_adjust()

View File

@ -1,9 +1,6 @@
import asyncio
import traceback
import time
from typing import Optional, Union, Dict, List, TYPE_CHECKING, Tuple
from typing import Optional
from src.chat.message_receive import message
from src.common.logger import get_logger
from src.mood.mood_manager import mood_manager
@ -12,5 +9,5 @@ logger = get_logger("mood_api")
async def get_mood_by_chat_id(chat_id: str) -> Optional[float]:
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
mood = asyncio.create_task(chat_mood.get_mood())
return mood
mood = asyncio.create_task(chat_mood.get_mood())
return mood

View File

@ -363,7 +363,7 @@ async def custom_reply_set_to_stream(
) -> bool:
"""
向指定流发送混合型消息集
Args:
reply_set: ReplySetModel 对象包含多个 ReplyContent
stream_id: 聊天流ID
@ -451,7 +451,9 @@ def _parse_content_to_seg(reply_content: "ReplyContent") -> Tuple[Seg, bool]:
single_node_content.append(sub_seg)
message_segment = Seg(type="seglist", data=single_node_content)
forward_message_list.append(
MessageBase(message_segment=message_segment, message_info=BaseMessageInfo(user_info=user_info)).to_dict()
MessageBase(
message_segment=message_segment, message_info=BaseMessageInfo(user_info=user_info)
).to_dict()
)
return Seg(type="forward", data=forward_message_list), False # type: ignore
else:

View File

@ -91,7 +91,7 @@ class ToolExecutor:
# 缓存未命中,执行工具调用
# 获取可用工具
tools = self._get_tool_definitions()
# print(f"tools: {tools}")
# 获取当前时间

View File

@ -48,7 +48,7 @@ class EmojiAction(BaseAction):
# 1. 获取发送表情的原因
# reason = self.action_data.get("reason", "表达当前情绪")
reason = self.reasoning
# 2. 随机获取20个表情包
sampled_emojis = await emoji_api.get_random(30)
if not sampled_emojis:

View File

@ -14,7 +14,6 @@ from src.plugins.built_in.relation.relation import BuildRelationAction
logger = get_logger("relation_actions")
class GetPersonInfoTool(BaseTool):
"""获取用户信息"""
@ -24,7 +23,7 @@ class GetPersonInfoTool(BaseTool):
("person_name", ToolParamType.STRING, "需要获取信息的人的名称", True, None),
("info_type", ToolParamType.STRING, "需要获取信息的类型", True, None),
]
available_for_llm = True
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
@ -44,7 +43,7 @@ class GetPersonInfoTool(BaseTool):
return {"content": f"用户 {person_name} 不存在"}
if not person.is_known:
return {"content": f"不认识用户 {person_name}"}
relation_str = await person.build_relationship(info_type=info_type)
return {"content": relation_str}