Merge pull request #1342 from Mai-with-u/dev

0.11.1
pull/1381/head 0.11.1-beta
SengokuCola 2025-11-04 20:57:00 +08:00 committed by GitHub
commit b9b8c9632f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 282 additions and 125 deletions

View File

@ -1,6 +1,14 @@
# Changelog
## [0.11.0] - 2025-9-22
## [0.11.1] - 2025-11-4
### 功能更改和修复
- 记忆现在能够被遗忘,并且拥有更好的合并
- 修复部分llm请求问题
- 优化记忆提取
- 提供replyer的细节debug配置
## [0.11.0] - 2025-10-27
### 🌟 主要功能更改
- 重构记忆系统,新的记忆系统更可靠,双通道查询,可以查询文本记忆和过去聊天记录
- 主动发言功能,麦麦会自主提出问题(可精细调控频率)

View File

@ -379,7 +379,7 @@ class EmojiManager:
self._scan_task = None
self.vlm = LLMRequest(model_set=model_config.model_task_config.vlm, request_type="emoji")
self.vlm = LLMRequest(model_set=model_config.model_task_config.vlm, request_type="emoji.see")
self.llm_emotion_judge = LLMRequest(
model_set=model_config.model_task_config.utils, request_type="emoji"
) # 更高的温度更少的token后续可以根据情绪来调整温度
@ -940,16 +940,16 @@ class EmojiManager:
image_base64 = get_image_manager().transform_gif(image_base64) # type: ignore
if not image_base64:
raise RuntimeError("GIF表情包转换失败")
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,简短描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
description, _ = await self.vlm.generate_response_for_image(
prompt, image_base64, "jpg", temperature=0.3, max_tokens=1000
prompt, image_base64, "jpg", temperature=0.5
)
else:
prompt = (
"这是一个表情包,请详细描述一下表情包所表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
"这是一个表情包,请详细描述一下表情包所表达的情感和内容,简短描述细节,从互联网梗,meme的角度去分析"
)
description, _ = await self.vlm.generate_response_for_image(
prompt, image_base64, image_format, temperature=0.3, max_tokens=1000
prompt, image_base64, image_format, temperature=0.5
)
# 审核表情包
@ -970,13 +970,14 @@ class EmojiManager:
# 第二步LLM情感分析 - 基于详细描述生成情感标签列表
emotion_prompt = f"""
请你识别这个表情包的含义和适用场景给我简短的描述每个描述不要超过15个字
这是一个基于这个表情包的描述'{description}'
你可以关注其幽默和讽刺意味动用贴吧微博小红书的知识必须从互联网梗,meme的角度去分析
请直接输出描述不要出现任何其他内容如果有多个描述可以用逗号分隔
这是一个聊天场景中的表情包描述'{description}'
请你识别这个表情包的含义和适用场景给我简短的描述每个描述不要超过15个字
你可以关注其幽默和讽刺意味动用贴吧微博小红书的知识必须从互联网梗,meme的角度去分析
请直接输出描述不要出现任何其他内容如果有多个描述可以用逗号分隔
"""
emotions_text, _ = await self.llm_emotion_judge.generate_response_async(
emotion_prompt, temperature=0.7, max_tokens=600
emotion_prompt, temperature=0.7, max_tokens=256
)
# 处理情感列表

View File

@ -149,8 +149,51 @@ class ChatBot:
async def handle_notice_message(self, message: MessageRecv):
if message.message_info.message_id == "notice":
message.is_notify = True
logger.info("notice消息")
print(message)
logger.debug("notice消息")
try:
seg = message.message_segment
mi = message.message_info
sub_type = None
scene = None
msg_id = None
recalled_id = None
if getattr(seg, "type", None) == "notify" and isinstance(getattr(seg, "data", None), dict):
sub_type = seg.data.get("sub_type")
scene = seg.data.get("scene")
msg_id = seg.data.get("message_id")
recalled = seg.data.get("recalled_user_info") or {}
if isinstance(recalled, dict):
recalled_id = recalled.get("user_id")
op = mi.user_info
gid = mi.group_info.group_id if mi.group_info else None
# 撤回事件打印;无法获取被撤回者则省略
if sub_type == "recall":
op_name = getattr(op, "user_cardname", None) or getattr(op, "user_nickname", None) or str(getattr(op, "user_id", None))
recalled_name = None
try:
if isinstance(recalled, dict):
recalled_name = (
recalled.get("user_cardname")
or recalled.get("user_nickname")
or str(recalled.get("user_id"))
)
except Exception:
pass
if recalled_name and str(recalled_id) != str(getattr(op, "user_id", None)):
logger.info(f"{op_name} 撤回了 {recalled_name} 的消息")
else:
logger.info(f"{op_name} 撤回了消息")
else:
logger.debug(
f"[notice] sub_type={sub_type} scene={scene} op={getattr(op,'user_nickname',None)}({getattr(op,'user_id',None)}) "
f"gid={gid} msg_id={msg_id} recalled={recalled_id}"
)
except Exception:
logger.info("[notice] (简略) 收到一条通知事件")
return True
@ -215,8 +258,7 @@ class ChatBot:
message.message_segment = Seg(type="seglist", data=modified_message.message_segments)
if await self.handle_notice_message(message):
# return
pass
return
# 处理消息内容,生成纯文本
await message.process()

View File

@ -136,7 +136,8 @@ class DefaultReplyer:
# logger.debug(f"replyer生成内容: {content}")
logger.info(f"replyer生成内容: {content}")
logger.info(f"replyer生成推理: {reasoning_content}")
if global_config.debug.show_replyer_reasoning:
logger.info(f"replyer生成推理:\n{reasoning_content}")
logger.info(f"replyer生成模型: {model_name}")
llm_response.content = content
@ -772,7 +773,7 @@ class DefaultReplyer:
continue
timing_logs.append(f"{chinese_name}: {duration:.1f}s")
if duration > 8:
if duration > 12:
logger.warning(f"回复生成前信息获取耗时过长: {chinese_name} 耗时: {duration:.1f}s请使用更快的模型")
logger.info(f"回复准备: {'; '.join(timing_logs)}; {almost_zero_str} <0.1s")
@ -1000,7 +1001,7 @@ class DefaultReplyer:
# 直接使用已初始化的模型实例
# logger.info(f"\n{prompt}\n")
if global_config.debug.show_prompt:
if global_config.debug.show_replyer_prompt:
logger.info(f"\n{prompt}\n")
else:
logger.debug(f"\nreplyer_Prompt:{prompt}\n")

View File

@ -679,7 +679,7 @@ class PrivateReplyer:
continue
timing_logs.append(f"{chinese_name}: {duration:.1f}s")
if duration > 8:
if duration > 12:
logger.warning(f"回复生成前信息获取耗时过长: {chinese_name} 耗时: {duration:.1f}s请使用更快的模型")
logger.info(f"回复准备: {'; '.join(timing_logs)}; {almost_zero_str} <0.1s")
@ -922,7 +922,7 @@ class PrivateReplyer:
# 直接使用已初始化的模型实例
logger.info(f"\n{prompt}\n")
if global_config.debug.show_prompt:
if global_config.debug.show_replyer_prompt:
logger.info(f"\n{prompt}\n")
else:
logger.debug(f"\n{prompt}\n")
@ -934,6 +934,8 @@ class PrivateReplyer:
content = content.strip()
logger.info(f"使用 {model_name} 生成回复内容: {content}")
if global_config.debug.show_replyer_reasoning:
logger.info(f"使用 {model_name} 生成回复推理:\n{reasoning_content}")
return content, reasoning_content, model_name, tool_calls
async def get_prompt_info(self, message: str, sender: str, target: str):

View File

@ -55,7 +55,7 @@ TEMPLATE_DIR = os.path.join(PROJECT_ROOT, "template")
# 考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
# 对该字段的更新请严格参照语义化版本规范https://semver.org/lang/zh-CN/
MMC_VERSION = "0.11.0"
MMC_VERSION = "0.11.1-snapshot.1"
def get_key_comment(toml_table, key):

View File

@ -642,6 +642,12 @@ class DebugConfig(ConfigBase):
show_prompt: bool = False
"""是否显示prompt"""
show_replyer_prompt: bool = True
"""是否显示回复器prompt"""
show_replyer_reasoning: bool = True
"""是否显示回复器推理"""
@dataclass
class ExperimentalConfig(ConfigBase):

View File

@ -237,15 +237,8 @@ def _build_stream_api_resp(
resp.tool_calls.append(ToolCall(call_id, function_name, arguments))
# 检查 max_tokens 截断
if finish_reason == "length":
if resp.content and resp.content.strip():
logger.warning(
"⚠ OpenAI 响应因达到 max_tokens 限制被部分截断,\n"
" 可能会对回复内容造成影响,建议修改模型 max_tokens 配置!"
)
else:
logger.warning("⚠ OpenAI 响应因达到 max_tokens 限制被截断,\n 请修改模型 max_tokens 配置!")
# 检查 max_tokens 截断(流式的告警改由处理函数统一输出,这里不再输出)
# 保留 finish_reason 仅用于上层判断
if not resp.content and not resp.tool_calls:
raise EmptyResponseException()
@ -270,6 +263,7 @@ async def _default_stream_response_handler(
_tool_calls_buffer: list[tuple[str, str, io.StringIO]] = [] # 工具调用缓冲区,用于存储接收到的工具调用
_usage_record = None # 使用情况记录
finish_reason: str | None = None # 记录最后的 finish_reason
_model_name: str | None = None # 记录模型名
def _insure_buffer_closed():
# 确保缓冲区被关闭
@ -300,6 +294,9 @@ async def _default_stream_response_handler(
if hasattr(event.choices[0], "finish_reason") and event.choices[0].finish_reason:
finish_reason = event.choices[0].finish_reason
if hasattr(event, "model") and event.model and not _model_name:
_model_name = event.model # 记录模型名
if hasattr(delta, "reasoning_content") and delta.reasoning_content: # type: ignore
# 标记:有独立的推理内容块
_has_rc_attr_flag = True
@ -322,12 +319,34 @@ async def _default_stream_response_handler(
)
try:
return _build_stream_api_resp(
resp = _build_stream_api_resp(
_fc_delta_buffer,
_rc_delta_buffer,
_tool_calls_buffer,
finish_reason=finish_reason,
), _usage_record
)
# 统一在这里输出 max_tokens 截断的警告,并从 resp 中读取
if finish_reason == "length":
# 把模型名塞到 resp.raw_data后续严格“从 resp 提取”
try:
if _model_name:
resp.raw_data = {"model": _model_name}
except Exception:
pass
model_dbg = None
try:
if isinstance(resp.raw_data, dict):
model_dbg = resp.raw_data.get("model")
except Exception:
model_dbg = None
# 统一日志格式
logger.info(
"模型%s因为超过最大max_token限制可能仅输出部分内容可视情况调整"
% (model_dbg or "")
)
return resp, _usage_record
except Exception:
# 确保缓冲区被关闭
_insure_buffer_closed()
@ -351,9 +370,32 @@ def _default_normal_response_parser(
"""
api_response = APIResponse()
if not hasattr(resp, "choices") or len(resp.choices) == 0:
raise EmptyResponseException("响应解析失败缺失choices字段或choices列表为空")
message_part = resp.choices[0].message
# 兼容部分 OpenAI 兼容服务在空回复时返回 choices=None 的情况
choices = getattr(resp, "choices", None)
if not choices:
try:
model_dbg = getattr(resp, "model", None)
id_dbg = getattr(resp, "id", None)
usage_dbg = None
if hasattr(resp, "usage") and resp.usage:
usage_dbg = {
"prompt": getattr(resp.usage, "prompt_tokens", None),
"completion": getattr(resp.usage, "completion_tokens", None),
"total": getattr(resp.usage, "total_tokens", None),
}
try:
raw_snippet = str(resp)[:300]
except Exception:
raw_snippet = "<unserializable>"
logger.debug(
f"empty choices: model={model_dbg} id={id_dbg} usage={usage_dbg} raw≈{raw_snippet}"
)
except Exception:
# 日志采集失败不应影响控制流
pass
# 统一抛出可重试的 EmptyResponseException触发上层重试逻辑
raise EmptyResponseException("响应解析失败choices 为空或缺失")
message_part = choices[0].message
if hasattr(message_part, "reasoning_content") and message_part.reasoning_content: # type: ignore
# 有有效的推理字段
@ -402,14 +444,13 @@ def _default_normal_response_parser(
choice0 = resp.choices[0]
reason = getattr(choice0, "finish_reason", None)
if reason and reason == "length":
has_real_output = bool(api_response.content and api_response.content.strip())
if has_real_output:
logger.warning(
"⚠ OpenAI 响应因达到 max_tokens 限制被部分截断,\n"
" 可能会对回复内容造成影响,建议修改模型 max_tokens 配置!"
print(resp)
_model_name = resp.model
# 统一日志格式
logger.info(
"模型%s因为超过最大max_token限制可能仅输出部分内容可视情况调整"
% (_model_name or "")
)
else:
logger.warning("⚠ OpenAI 响应因达到 max_tokens 限制被截断,\n 请修改模型 max_tokens 配置!")
return api_response, _usage_record
except Exception as e:
logger.debug(f"检查 MAX_TOKENS 截断时异常: {e}")
@ -522,7 +563,7 @@ class OpenaiClient(BaseClient):
await asyncio.sleep(0.1) # 等待0.5秒后再次检查任务&中断信号量状态
# logger.
logger.debug(f"OpenAI API响应(非流式): {req_task.result()}")
# logger.debug(f"OpenAI API响应(非流式): {req_task.result()}")
# logger.info(f"OpenAI请求时间: {model_info.model_identifier} {time.time() - start_time} \n{messages}")

View File

@ -270,13 +270,28 @@ class LLMRequest:
audio_base64=audio_base64,
extra_params=model_info.extra_params,
)
except (EmptyResponseException, NetworkConnectionError) as e:
except EmptyResponseException as e:
# 空回复:通常为临时问题,单独记录并重试
retry_remain -= 1
if retry_remain <= 0:
logger.error(f"模型 '{model_info.name}'用尽对临时错误的重试次数后仍然失败。")
logger.error(f"模型 '{model_info.name}'多次出现空回复后仍然失败。")
raise ModelAttemptFailed(f"模型 '{model_info.name}' 重试耗尽", original_exception=e) from e
logger.warning(f"模型 '{model_info.name}' 遇到可重试错误: {str(e)}。剩余重试次数: {retry_remain}")
logger.warning(
f"模型 '{model_info.name}' 返回空回复(可重试)。剩余重试次数: {retry_remain}"
)
await asyncio.sleep(api_provider.retry_interval)
except NetworkConnectionError as e:
# 网络错误:单独记录并重试
retry_remain -= 1
if retry_remain <= 0:
logger.error(f"模型 '{model_info.name}' 在网络错误重试用尽后仍然失败。")
raise ModelAttemptFailed(f"模型 '{model_info.name}' 重试耗尽", original_exception=e) from e
logger.warning(
f"模型 '{model_info.name}' 遇到网络错误(可重试): {str(e)}。剩余重试次数: {retry_remain}"
)
await asyncio.sleep(api_provider.retry_interval)
except RespNotOkException as e:
@ -369,8 +384,8 @@ class LLMRequest:
failed_models_this_request.add(model_info.name)
if isinstance(last_exception, RespNotOkException) and last_exception.status_code == 400:
logger.error("收到不可恢复的客户端错误 (400),中止所有尝试")
raise last_exception from e
logger.warning("收到客户端错误 (400),跳过当前模型并继续尝试其他模型")
continue
logger.error(f"所有 {max_attempts} 个模型均尝试失败。")
if last_exception:

View File

@ -41,6 +41,80 @@ class MemoryChest:
self.running_content_list = {} # {chat_id: {"content": running_content, "last_update_time": timestamp, "create_time": timestamp}}
self.fetched_memory_list = [] # [(chat_id, (question, answer, timestamp)), ...]
def remove_one_memory_by_age_weight(self) -> bool:
"""
删除一条记忆越老/越新更易被删的权重随机选择=较小id=较大id
返回是否删除成功
"""
try:
memories = list(MemoryChestModel.select())
if not memories:
return False
# 排除锁定项
candidates = [m for m in memories if not getattr(m, "locked", False)]
if not candidates:
return False
# 按 id 排序,使用 id 近似时间顺序(小 -> 老,大 -> 新)
candidates.sort(key=lambda m: m.id)
n = len(candidates)
if n == 1:
MemoryChestModel.delete().where(MemoryChestModel.id == candidates[0].id).execute()
logger.info(f"[记忆管理] 已删除一条记忆(权重抽样){candidates[0].title}")
return True
# 计算U型权重中间最低两端最高
# r ∈ [0,1] 为位置归一化w = 0.1 + 0.9 * (abs(r-0.5)*2)**1.5
weights = []
for idx, _m in enumerate(candidates):
r = idx / (n - 1)
w = 0.1 + 0.9 * (abs(r - 0.5) * 2) ** 1.5
weights.append(w)
import random as _random
selected = _random.choices(candidates, weights=weights, k=1)[0]
MemoryChestModel.delete().where(MemoryChestModel.id == selected.id).execute()
logger.info(f"[记忆管理] 已删除一条记忆(权重抽样){selected.title}")
return True
except Exception as e:
logger.error(f"[记忆管理] 按年龄权重删除记忆时出错: {e}")
return False
def _compute_merge_similarity_threshold(self) -> float:
"""
根据当前记忆数量占比动态计算合并相似度阈值
规则占比越高阈值越低
- < 60%: 0.80更严格避免早期误合并
- < 80%: 0.70
- < 100%: 0.60
- < 120%: 0.50
- >= 120%: 0.45最宽松加速收敛
"""
try:
current_count = MemoryChestModel.select().count()
max_count = max(1, int(global_config.memory.max_memory_number))
percentage = current_count / max_count
if percentage < 0.6:
return 0.70
elif percentage < 0.8:
return 0.60
elif percentage < 1.0:
return 0.50
elif percentage < 1.5:
return 0.40
elif percentage < 2:
return 0.30
else:
return 0.25
except Exception:
# 发生异常时使用保守阈值
return 0.70
async def build_running_content(self, chat_id: str = None) -> str:
"""
构建记忆仓库的运行内容
@ -446,19 +520,22 @@ class MemoryChest:
logger.warning("未提供chat_id无法进行记忆匹配")
return [], []
# 使用相似度匹配查找最相似的记忆
# 动态计算相似度阈值(占比越高阈值越低)
dynamic_threshold = self._compute_merge_similarity_threshold()
# 使用相似度匹配查找最相似的记忆(基于动态阈值)
similar_memory = find_most_similar_memory_by_chat_id(
target_title=memory_title,
target_chat_id=chat_id,
similarity_threshold=0.5 # 相似度阈值
similarity_threshold=dynamic_threshold
)
if similar_memory:
selected_title, selected_content, similarity = similar_memory
logger.info(f"'{memory_title}' 找到相似记忆: '{selected_title}' (相似度: {similarity:.3f})")
logger.info(f"'{memory_title}' 找到相似记忆: '{selected_title}' (相似度: {similarity:.3f} 阈值: {dynamic_threshold:.2f})")
return [selected_title], [selected_content]
else:
logger.info(f"'{memory_title}' 未找到相似度 >= 0.7 的记忆")
logger.info(f"'{memory_title}' 未找到相似度 >= {dynamic_threshold:.2f} 的记忆")
return [], []
except Exception as e:

View File

@ -8,7 +8,6 @@ from src.memory_system.Memory_chest import global_memory_chest
from src.common.logger import get_logger
from src.common.database.database_model import MemoryChest as MemoryChestModel
from src.config.config import global_config
from src.memory_system.memory_utils import get_all_titles
logger = get_logger("memory")
@ -56,19 +55,19 @@ class MemoryManagementTask(AsyncTask):
current_count = self._get_memory_count()
percentage = current_count / self.max_memory_number
if percentage < 0.5:
if percentage < 0.6:
# 小于50%每600秒执行一次
return 3600
elif percentage < 0.7:
elif percentage < 1:
# 大于等于50%每300秒执行一次
return 1800
elif percentage < 0.9:
# 大于等于70%每120秒执行一次
return 300
elif percentage < 1.2:
return 30
elif percentage < 1.5:
# 大于等于100%每120秒执行一次
return 600
elif percentage < 1.8:
return 120
else:
return 10
return 30
except Exception as e:
logger.error(f"[记忆管理] 计算执行间隔时出错: {e}")
@ -93,6 +92,22 @@ class MemoryManagementTask(AsyncTask):
percentage = current_count / self.max_memory_number
logger.info(f"当前记忆数量: {current_count}/{self.max_memory_number} ({percentage:.1%})")
# 当占比 > 1.6 时,持续删除直到占比 <= 1.6(越老/越新更易被删)
if percentage > 2:
logger.info("记忆过多,开始遗忘记忆")
while True:
if percentage <= 1.8:
break
removed = global_memory_chest.remove_one_memory_by_age_weight()
if not removed:
logger.warning("没有可删除的记忆,停止连续删除")
break
# 重新计算占比
current_count = self._get_memory_count()
percentage = current_count / self.max_memory_number
logger.info(f"遗忘进度: 当前 {current_count}/{self.max_memory_number} ({percentage:.1%})")
logger.info("遗忘记忆结束")
# 如果记忆数量为0跳过执行
if current_count < 10:
return

View File

@ -1,13 +1,8 @@
from typing import Tuple
import asyncio
from datetime import datetime
from src.common.logger import get_logger
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt
from src.llm_models.payload_content.tool_option import ToolParamType
from src.plugin_system import BaseAction, ActionActivationType
from src.chat.utils.utils import cut_key_words
from src.memory_system.Memory_chest import global_memory_chest
from src.plugin_system.base.base_tool import BaseTool
from src.plugin_system.apis.message_api import get_messages_by_time_in_chat, build_readable_messages
@ -125,12 +120,10 @@ class GetMemoryTool(BaseTool):
chat_answer = results.get("chat")
# 构建返回内容
content_parts = [f"问题:{question}"]
content_parts = []
if memory_answer:
content_parts.append(f"对问题'{question}',你回忆的信息是:{memory_answer}")
else:
content_parts.append(f"对问题'{question}',没有什么印象")
if chat_answer:
content_parts.append(f"对问题'{question}',基于聊天记录的回答:{chat_answer}")
@ -140,7 +133,12 @@ class GetMemoryTool(BaseTool):
elif time_range:
content_parts.append(f"{time_range} 的时间范围内,你没有参与聊天")
return {"content": "\n".join(content_parts)}
if content_parts:
retrieval_content = f"问题:{question}" + "\n".join(content_parts)
return {"content": retrieval_content}
else:
return {"content": ""}
async def _get_answer_from_chat_history(self, question: str, time_point: str = None, time_range: str = None) -> str:
"""从聊天记录中获取问题的答案"""
@ -245,53 +243,3 @@ class GetMemoryTool(BaseTool):
except Exception as e:
logger.error(f"从聊天记录获取答案失败: {e}")
return ""
class GetMemoryAction(BaseAction):
"""关系动作 - 获取记忆"""
activation_type = ActionActivationType.LLM_JUDGE
parallel_action = True
# 动作基本信息
action_name = "get_memory"
action_description = (
"在记忆中搜寻某个问题的答案"
)
# 动作参数定义
action_parameters = {
"question": "需要搜寻或回答的问题",
}
# 动作使用场景
action_require = [
"在记忆中搜寻某个问题的答案",
"有你不了解的概念",
"有人提问关于过去的事情",
"你需要根据记忆回答某个问题",
]
# 关联类型
associated_types = ["text"]
async def execute(self) -> Tuple[bool, str]:
"""执行关系动作"""
question = self.action_data.get("question", "")
answer = await global_memory_chest.get_answer_by_question(self.chat_id, question)
if not answer:
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=f"你回忆了有关问题:{question}的记忆,但是没有找到相关记忆",
action_done=True,
)
return False, f"问题:{question},没有找到相关记忆"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=f"你回忆了有关问题:{question}的记忆,答案是:{answer}",
action_done=True,
)
return True, f"成功获取记忆: {answer}"

View File

@ -7,7 +7,7 @@ from src.plugin_system.base.config_types import ConfigField
# 导入依赖的系统组件
from src.common.logger import get_logger
from src.plugins.built_in.memory.build_memory import GetMemoryAction, GetMemoryTool
from src.plugins.built_in.memory.build_memory import GetMemoryTool
logger = get_logger("memory_build")
@ -48,7 +48,6 @@ class MemoryBuildPlugin(BasePlugin):
# --- 根据配置注册组件 ---
components = []
# components.append((GetMemoryAction.get_action_info(), GetMemoryAction))
components.append((GetMemoryTool.get_tool_info(), GetMemoryTool))
return components

View File

@ -1,5 +1,5 @@
[inner]
version = "6.19.1"
version = "6.19.2"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请递增version的值
@ -221,6 +221,8 @@ library_log_levels = { aiohttp = "WARNING"} # 设置特定库的日志级别
[debug]
show_prompt = false # 是否显示prompt
show_replyer_prompt = false # 是否显示回复器prompt
show_replyer_reasoning = false # 是否显示回复器推理
[maim_message]
auth_token = [] # 认证令牌用于API验证为空则不启用验证