feat:非核心动作已从planner分离到副planner,移除action的激活机制,添加模型

pull/1217/head
SengokuCola 2025-08-22 22:35:27 +08:00
parent 1ddfa47e68
commit b525e1e098
10 changed files with 609 additions and 140 deletions

View File

@ -29,6 +29,7 @@ from src.plugin_system.core import events_manager
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
from src.mais4u.mai_think import mai_thinking_manager
from src.mais4u.s4u_config import s4u_config
from src.chat.utils.chat_message_builder import build_readable_messages_with_id, build_readable_actions, get_actions_by_timestamp_with_chat, get_raw_msg_before_timestamp_with_chat
if TYPE_CHECKING:
from src.common.data_models.database_data_model import DatabaseMessages
@ -402,8 +403,8 @@ class HeartFChatting:
)
]
else:
# 第一步:动作修改
with Timer("动作修改", cycle_timers):
# 第一步:动作检查
with Timer("动作检查", cycle_timers):
try:
await self.action_modifier.modify_actions()
available_actions = self.action_manager.get_using_actions()
@ -412,10 +413,45 @@ class HeartFChatting:
# 执行planner
planner_info = self.action_planner.get_necessary_info()
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=self.stream_id,
timestamp=time.time(),
limit=int(global_config.chat.max_context_size * 0.6),
)
chat_content_block, message_id_list = build_readable_messages_with_id(
messages=message_list_before_now,
timestamp_mode="normal_no_YMD",
read_mark=self.action_planner.last_obs_time_mark,
truncate=True,
show_actions=True,
)
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=self.stream_id,
timestamp_start=time.time() - 600,
timestamp_end=time.time(),
limit=5,
)
actions_before_now_block = build_readable_actions(
actions=actions_before_now,
)
prompt_info = await self.action_planner.build_planner_prompt(
is_group_chat=planner_info[0],
chat_target_info=planner_info[1],
current_available_actions=planner_info[2],
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
message_id_list=message_id_list,
)
if not await events_manager.handle_mai_events(
EventType.ON_PLAN, None, prompt_info[0], None, self.chat_stream.stream_id
@ -427,6 +463,9 @@ class HeartFChatting:
loop_start_time=self.last_read_time,
available_actions=available_actions,
)
for action in action_to_use_info:
print(action.action_type)
# 3. 并行执行所有动作
action_tasks = [

View File

@ -60,7 +60,7 @@ class ActionModifier:
removals_s1: List[Tuple[str, str]] = []
removals_s2: List[Tuple[str, str]] = []
removals_s3: List[Tuple[str, str]] = []
# removals_s3: List[Tuple[str, str]] = []
self.action_manager.restore_actions()
all_actions = self.action_manager.get_using_actions()
@ -103,26 +103,28 @@ class ActionModifier:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段二移除动作: {action_name},原因: {reason}")
# === 第三阶段:激活类型判定 ===
if chat_content is not None:
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
# if chat_content is not None:
# logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
# 获取当前使用的动作集(经过第一阶段处理)
current_using_actions = self.action_manager.get_using_actions()
# current_using_actions = self.action_manager.get_using_actions()
# 获取因激活类型判定而需要移除的动作
removals_s3 = await self._get_deactivated_actions_by_type(
current_using_actions,
chat_content,
)
# removals_s3 = await self._get_deactivated_actions_by_type(
# current_using_actions,
# chat_content,
# )
# 应用第三阶段的移除
for action_name, reason in removals_s3:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段三移除动作: {action_name},原因: {reason}")
# for action_name, reason in removals_s3:
# self.action_manager.remove_action_from_using(action_name)
# logger.debug(f"{self.log_prefix}阶段三移除动作: {action_name},原因: {reason}")
# === 统一日志记录 ===
all_removals = removals_s1 + removals_s2 + removals_s3
all_removals = removals_s1 + removals_s2
removals_summary: str = ""
if all_removals:
removals_summary = " | ".join([f"{name}({reason})" for name, reason in all_removals])

View File

@ -21,8 +21,9 @@ from src.chat.utils.chat_message_builder import (
from src.chat.utils.utils import get_chat_type_and_target_info
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ComponentType
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ComponentType, ActionActivationType
from src.plugin_system.core.component_registry import component_registry
import random
logger = get_logger("planner")
@ -82,6 +83,36 @@ def init_prompt():
""",
"action_prompt",
)
Prompt(
"""
{time_block}
{name_block}
请你根据聊天内容选择一个或多个action来参与聊天如果没有合适的action请选择no_action
{chat_context_description}以下是具体的聊天内容
{chat_content_block}
{moderation_prompt}
现在请你根据聊天内容和用户的最新消息选择合适的action和触发action的消息:
{actions_before_now_block}
no_action不选择任何动作
{{
"action": "no_action",
"reason":"不动作的原因"
}}
{action_options_text}
请选择并说明触发action的消息id和选择该action的原因消息id格式:m+数字
请根据动作示例以严格的 JSON 格式输出且仅包含 JSON 内容
""",
"sub_planner_prompt",
)
class ActionPlanner:
@ -93,6 +124,9 @@ class ActionPlanner:
self.planner_llm = LLMRequest(
model_set=model_config.model_task_config.planner, request_type="planner"
) # 用于动作规划
self.planner_small_llm = LLMRequest(
model_set=model_config.model_task_config.planner_small, request_type="planner_small"
) # 用于动作规划
self.last_obs_time_mark = 0.0
# 添加重试计数器
@ -100,7 +134,7 @@ class ActionPlanner:
self.max_plan_retries = 3
def find_message_by_id(
self, message_id: str, message_id_list: List[DatabaseMessages]
self, message_id: str, message_id_list: List[Tuple[str, DatabaseMessages]]
) -> Optional[DatabaseMessages]:
# sourcery skip: use-next
"""
@ -114,8 +148,8 @@ class ActionPlanner:
找到的原始消息字典如果未找到则返回None
"""
for item in message_id_list:
if item.message_id == message_id:
return item
if item[0] == message_id:
return item[1]
return None
def get_latest_message(self, message_id_list: List[DatabaseMessages]) -> Optional[DatabaseMessages]:
@ -129,6 +163,247 @@ class ActionPlanner:
最新的消息字典如果列表为空则返回None
"""
return message_id_list[-1] if message_id_list else None
def _parse_single_action(self, action_json: dict, message_id_list: List[Tuple[str, DatabaseMessages]], current_available_actions: List[Tuple[str, ActionInfo]]) -> List[ActionPlannerInfo]:
"""解析单个action JSON并返回ActionPlannerInfo列表"""
action_planner_infos = []
try:
action = action_json.get("action", "no_action")
reasoning = action_json.get("reason", "未提供原因")
action_data = {}
# 将所有其他属性添加到action_data
for key, value in action_json.items():
if key not in ["action", "reasoning"]:
action_data[key] = value
# 非no_action动作需要target_message_id
target_message = None
if action != "no_action":
if target_message_id := action_json.get("target_message_id"):
# 根据target_message_id查找原始消息
target_message = self.find_message_by_id(target_message_id, message_id_list)
if target_message is None:
logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息")
# 选择最新消息作为target_message
target_message = self.get_latest_message(message_id_list)
else:
logger.warning(f"{self.log_prefix}动作'{action}'缺少target_message_id")
# 验证action是否可用
available_action_names = [action_name for action_name, _ in current_available_actions]
if action != "no_action" and action != "reply" and action not in available_action_names:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {available_action_names}),将强制使用 'no_action'"
)
reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {available_action_names})。原始理由: {reasoning}"
action = "no_action"
# 创建ActionPlannerInfo对象
# 将列表转换为字典格式
available_actions_dict = dict(current_available_actions)
action_planner_infos.append(ActionPlannerInfo(
action_type=action,
reasoning=reasoning,
action_data=action_data,
action_message=target_message,
available_actions=available_actions_dict,
))
except Exception as e:
logger.error(f"{self.log_prefix}解析单个action时出错: {e}")
# 将列表转换为字典格式
available_actions_dict = dict(current_available_actions)
action_planner_infos.append(ActionPlannerInfo(
action_type="no_action",
reasoning=f"解析单个action时出错: {e}",
action_data={},
action_message=None,
available_actions=available_actions_dict,
))
return action_planner_infos
async def sub_plan(
self,
action_list: List[Tuple[str, ActionInfo]],
actions_before_now_block: str,
chat_content_block: str,
message_id_list: List[Tuple[str, DatabaseMessages]],
is_group_chat: bool = False,
chat_target_info: Optional[dict] = None,
# current_available_actions: Dict[str, ActionInfo] = {},
) -> List[ActionPlannerInfo]:
# 构建副planner并执行(单个副planner)
try:
if actions_before_now_block:
actions_before_now_block = f"你刚刚选择并执行过的action是\n{actions_before_now_block}"
else:
actions_before_now_block = ""
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None
if not is_group_chat and chat_target_info:
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
)
chat_context_description = f"你正在和 {chat_target_name} 私聊"
action_options_block = ""
for using_actions_name, using_actions_info in action_list:
if using_actions_info.action_parameters:
param_text = "\n"
for param_name, param_description in using_actions_info.action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in using_actions_info.action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info.description,
action_parameters=param_text,
action_require=require_text,
)
action_options_block += using_action_prompt
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
name_block = f"你的名字是{bot_name}{bot_nickname},请注意哪些是你自己的发言。"
planner_prompt_template = await global_prompt_manager.get_prompt_async("sub_planner_prompt")
prompt = planner_prompt_template.format(
time_block=time_block,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,
name_block=name_block,
)
# return prompt, message_id_list
except Exception as e:
logger.error(f"构建 Planner 提示词时出错: {e}")
logger.error(traceback.format_exc())
return "构建 Planner Prompt 时出错", []
# --- 调用 LLM (普通文本生成) ---
llm_content = None
action_planner_infos = [] # 存储多个ActionPlannerInfo对象
try:
llm_content, (reasoning_content, _, _) = await self.planner_llm.generate_response_async(prompt=prompt)
if global_config.debug.show_prompt:
logger.info(f"{self.log_prefix}副规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}副规划器原始响应: {llm_content}")
if reasoning_content:
logger.info(f"{self.log_prefix}副规划器推理: {reasoning_content}")
else:
logger.debug(f"{self.log_prefix}副规划器原始提示词: {prompt}")
logger.debug(f"{self.log_prefix}副规划器原始响应: {llm_content}")
if reasoning_content:
logger.debug(f"{self.log_prefix}副规划器推理: {reasoning_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}副规划器LLM 请求执行失败: {req_e}")
# 返回一个默认的no_action
action_planner_infos.append(ActionPlannerInfo(
action_type="no_action",
reasoning=f"副规划器LLM 请求失败,模型出现问题: {req_e}",
action_data={},
action_message=None,
available_actions=action_list,
))
return action_planner_infos
if llm_content:
try:
parsed_json = json.loads(repair_json(llm_content))
# 处理不同的JSON格式
if isinstance(parsed_json, list):
# 如果是列表处理每个action
if parsed_json:
logger.info(f"{self.log_prefix}LLM返回了{len(parsed_json)}个action")
for action_item in parsed_json:
if isinstance(action_item, dict):
action_planner_infos.extend(self._parse_single_action(
action_item, message_id_list, action_list
))
else:
logger.warning(f"{self.log_prefix}列表中的action项不是字典类型: {type(action_item)}")
else:
logger.warning(f"{self.log_prefix}LLM返回了空列表")
action_planner_infos.append(ActionPlannerInfo(
action_type="no_action",
reasoning="LLM返回了空列表选择no_action",
action_data={},
action_message=None,
available_actions=action_list,
))
elif isinstance(parsed_json, dict):
# 如果是单个字典处理单个action
action_planner_infos.extend(self._parse_single_action(
parsed_json, message_id_list, action_list
))
else:
logger.error(f"{self.log_prefix}解析后的JSON不是字典或列表类型: {type(parsed_json)}")
action_planner_infos.append(ActionPlannerInfo(
action_type="no_action",
reasoning=f"解析后的JSON类型错误: {type(parsed_json)}",
action_data={},
action_message=None,
available_actions=action_list,
))
except Exception as json_e:
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
traceback.print_exc()
action_planner_infos.append(ActionPlannerInfo(
action_type="no_action",
reasoning=f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_action'.",
action_data={},
action_message=None,
available_actions=action_list,
))
else:
# 如果没有LLM内容返回默认的no_action
action_planner_infos.append(ActionPlannerInfo(
action_type="no_action",
reasoning="副规划器没有获得LLM响应",
action_data={},
action_message=None,
available_actions=action_list,
))
# 如果没有解析到任何action返回默认的no_action
if not action_planner_infos:
action_planner_infos.append(ActionPlannerInfo(
action_type="no_action",
reasoning="副规划器没有解析到任何有效action",
action_data={},
action_message=None,
available_actions=action_list,
))
logger.info(f"{self.log_prefix}副规划器返回了{len(action_planner_infos)}个action")
return action_planner_infos
async def plan(
self,
@ -147,17 +422,144 @@ class ActionPlanner:
target_message: Optional[DatabaseMessages] = None # 初始化target_message变量
prompt: str = ""
message_id_list: list = []
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id,
timestamp=time.time(),
limit=int(global_config.chat.max_context_size * 0.6),
)
chat_content_block, message_id_list = build_readable_messages_with_id(
messages=message_list_before_now,
timestamp_mode="normal_no_YMD",
read_mark=self.last_obs_time_mark,
truncate=True,
show_actions=True,
)
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=time.time() - 600,
timestamp_end=time.time(),
limit=5,
)
actions_before_now_block = build_readable_actions(
actions=actions_before_now,
)
message_list_before_now_short = message_list_before_now[:5]
chat_content_block_short, message_id_list_short = build_readable_messages_with_id(
messages=message_list_before_now_short,
timestamp_mode="normal_no_YMD",
truncate=False,
show_actions=False,
)
self.last_obs_time_mark = time.time()
try:
logger.info(f"{self.log_prefix}开始构建副Planner")
sub_planner_actions = {}
for action_name, action_info in available_actions.items():
if action_info.activation_type == ActionActivationType.LLM_JUDGE or action_info.activation_type == ActionActivationType.ALWAYS:
sub_planner_actions[action_name] = action_info
elif action_info.activation_type == ActionActivationType.RANDOM:
if random.random() < action_info.random_activation_probability:
sub_planner_actions[action_name] = action_info
elif action_info.activation_type == ActionActivationType.KEYWORD:
if action_info.activation_keywords:
for keyword in action_info.activation_keywords:
if keyword in chat_content_block_short:
sub_planner_actions[action_name] = action_info
elif action_info.activation_type == ActionActivationType.NEVER:
pass
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {action_info.activation_type},跳过处理")
sub_planner_actions_num = len(sub_planner_actions)
sub_planner_size = global_config.chat.planner_size
if global_config.chat.planner_size > int(global_config.chat.planner_size):
if random.random() < global_config.chat.planner_size - int(global_config.chat.planner_size):
sub_planner_size = int(global_config.chat.planner_size) + 1
sub_planner_num = int(sub_planner_actions_num / sub_planner_size)
if sub_planner_actions_num % sub_planner_size != 0:
sub_planner_num += 1
logger.info(f"{self.log_prefix}副规划器数量: {sub_planner_num}, 副规划器大小: {sub_planner_size}")
# 将sub_planner_actions随机分配到sub_planner_num个List中
sub_planner_lists = []
if sub_planner_actions_num > 0:
# 将actions转换为列表并随机打乱
action_items = list(sub_planner_actions.items())
random.shuffle(action_items)
# 初始化所有子列表
for i in range(sub_planner_num):
sub_planner_lists.append([])
# 分配actions到各个子列表
for i, (action_name, action_info) in enumerate(action_items):
# 确保每个列表至少有一个action
if i < sub_planner_num:
sub_planner_lists[i].append((action_name, action_info))
else:
# 随机选择一个列表添加action但不超过最大大小限制
available_lists = [j for j, lst in enumerate(sub_planner_lists)
if len(lst) < sub_planner_size]
if available_lists:
target_list = random.choice(available_lists)
sub_planner_lists[target_list].append((action_name, action_info))
logger.info(f"{self.log_prefix}成功将{len(sub_planner_actions)}个actions分配到{sub_planner_num}个子列表中")
for i, lst in enumerate(sub_planner_lists):
logger.debug(f"{self.log_prefix}子列表{i+1}: {len(lst)}个actions")
else:
logger.info(f"{self.log_prefix}没有可用的actions需要分配")
# 先获取必要信息
is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info()
# 并行执行所有副规划器
import asyncio
async def execute_sub_plan(action_list):
return await self.sub_plan(
action_list=action_list,
actions_before_now_block=actions_before_now_block,
chat_content_block=chat_content_block_short,
message_id_list=message_id_list_short,
is_group_chat=is_group_chat,
chat_target_info=chat_target_info,
# current_available_actions=current_available_actions,
)
# 创建所有任务
sub_plan_tasks = [execute_sub_plan(action_list) for action_list in sub_planner_lists]
# 并行执行所有任务
sub_plan_results = await asyncio.gather(*sub_plan_tasks)
# 收集所有结果
all_sub_planner_results = []
for sub_result in sub_plan_results:
all_sub_planner_results.extend(sub_result)
logger.info(f"{self.log_prefix}所有副规划器共返回了{len(all_sub_planner_results)}个action")
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt, message_id_list = await self.build_planner_prompt(
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息
current_available_actions=current_available_actions, # <-- Pass determined actions
current_available_actions="", # <-- Pass determined actions
mode=mode,
refresh_time=True,
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
message_id_list=message_id_list,
)
# --- 调用 LLM (普通文本生成) ---
@ -185,60 +587,54 @@ class ActionPlanner:
try:
parsed_json = json.loads(repair_json(llm_content))
# 处理不同的JSON格式复用_parse_single_action函数
if isinstance(parsed_json, list):
if parsed_json:
# 使用最后一个action保持原有逻辑
parsed_json = parsed_json[-1]
logger.warning(f"{self.log_prefix}LLM返回了多个JSON对象使用最后一个: {parsed_json}")
else:
parsed_json = {}
if not isinstance(parsed_json, dict):
logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}")
parsed_json = {}
action = parsed_json.get("action", "no_action")
reasoning = parsed_json.get("reason", "未提供原因")
# 将所有其他属性添加到action_data
for key, value in parsed_json.items():
if key not in ["action", "reasoning"]:
action_data[key] = value
# 非no_action动作需要target_message_id
if action != "no_action":
if target_message_id := parsed_json.get("target_message_id"):
# 根据target_message_id查找原始消息
target_message = self.find_message_by_id(target_message_id, message_id_list)
# 如果获取的target_message为None输出warning并重新plan
if target_message is None:
self.plan_retry_count += 1
logger.warning(
f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息,重试次数: {self.plan_retry_count}/{self.max_plan_retries}"
)
# 仍有重试次数
if self.plan_retry_count < self.max_plan_retries:
# 递归重新plan
return await self.plan(mode, loop_start_time, available_actions)
logger.error(
f"{self.log_prefix}连续{self.max_plan_retries}次plan获取target_message失败选择最新消息作为target_message"
)
target_message = self.get_latest_message(message_id_list)
self.plan_retry_count = 0 # 重置计数器
else:
logger.warning(f"{self.log_prefix}动作'{action}'缺少target_message_id")
if action != "no_action" and action != "reply" and action not in current_available_actions:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_action'"
if isinstance(parsed_json, dict):
# 使用_parse_single_action函数解析单个action
# 将字典转换为列表格式
current_available_actions_list = list(current_available_actions.items())
action_planner_infos = self._parse_single_action(
parsed_json, message_id_list, current_available_actions_list
)
reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {list(current_available_actions.keys())})。原始理由: {reasoning}"
if action_planner_infos:
# 获取第一个也是唯一一个action的信息
action_info = action_planner_infos[0]
action = action_info.action_type
reasoning = action_info.reasoning
action_data.update(action_info.action_data)
target_message = action_info.action_message
# 处理target_message为None的情况保持原有的重试逻辑
if target_message is None and action != "no_action":
# 尝试获取最新消息作为target_message
target_message = self.get_latest_message(message_id_list)
if target_message is None:
logger.warning(f"{self.log_prefix}无法获取任何消息作为target_message")
else:
# 如果没有解析到action使用默认值
action = "no_action"
reasoning = "解析action失败"
target_message = None
else:
logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}")
action = "no_action"
reasoning = f"解析后的JSON类型错误: {type(parsed_json)}"
target_message = None
except Exception as json_e:
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
traceback.print_exc()
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_action'."
action = "no_action"
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_action'."
target_message = None
except Exception as outer_e:
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_action: {outer_e}")
@ -246,30 +642,70 @@ class ActionPlanner:
action = "no_action"
reasoning = f"Planner 内部处理错误: {outer_e}"
is_parallel = False
is_parallel = True
if mode == ChatMode.NORMAL and action in current_available_actions:
is_parallel = current_available_actions[action].parallel_action
if is_parallel:
is_parallel = current_available_actions[action].parallel_action
action_data["loop_start_time"] = loop_start_time
actions = [
ActionPlannerInfo(
action_type=action,
reasoning=reasoning,
action_data=action_data,
action_message=target_message,
available_actions=available_actions,
)
]
if action != "reply" and is_parallel:
actions.append(
ActionPlannerInfo(
action_type="reply",
# 过滤掉no_action除非所有结果都是no_action
def filter_no_actions(action_list):
"""过滤no_action如果所有都是no_action则返回一个"""
non_no_actions = [a for a in action_list if a.action_type != "no_action"]
if non_no_actions:
return non_no_actions
else:
# 如果所有都是no_action返回第一个
return [action_list[0]] if action_list else []
# 根据is_parallel决定返回值
if is_parallel:
# 如果为真,将主规划器的结果和副规划器的结果都返回
main_actions = []
# 添加主规划器的action如果不是no_action
if action != "no_action":
main_actions.append(ActionPlannerInfo(
action_type=action,
reasoning=reasoning,
action_data=action_data,
action_message=target_message,
available_actions=available_actions,
)
)
))
# 先合并主副规划器的结果
all_actions = main_actions + all_sub_planner_results
# 然后统一过滤no_action
actions = filter_no_actions(all_actions)
# 如果所有结果都是no_action返回一个no_action
if not actions:
actions = [ActionPlannerInfo(
action_type="no_action",
reasoning="所有规划器都选择不执行动作",
action_data={},
action_message=None,
available_actions=available_actions,
)]
logger.info(f"{self.log_prefix}并行模式:返回主规划器{len(main_actions)}个action + 副规划器{len(all_sub_planner_results)}个action过滤后总计{len(actions)}个action")
else:
# 如果为假,只返回副规划器的结果
actions = filter_no_actions(all_sub_planner_results)
# 如果所有结果都是no_action返回一个no_action
if not actions:
actions = [ActionPlannerInfo(
action_type="no_action",
reasoning="副规划器都选择不执行动作",
action_data={},
action_message=None,
available_actions=available_actions,
)]
logger.info(f"{self.log_prefix}非并行模式:返回副规划器的{len(actions)}个action已过滤no_action")
return actions, target_message
@ -278,43 +714,19 @@ class ActionPlanner:
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
current_available_actions: Dict[str, ActionInfo],
refresh_time: bool = False,
mode: ChatMode = ChatMode.FOCUS,
actions_before_now_block :str = "",
chat_content_block :str = "",
message_id_list :List[Tuple[str, DatabaseMessages]] = None,
) -> tuple[str, List[DatabaseMessages]]: # sourcery skip: use-join
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id,
timestamp=time.time(),
limit=int(global_config.chat.max_context_size * 0.6),
)
chat_content_block, message_id_list = build_readable_messages_with_id(
messages=message_list_before_now,
timestamp_mode="normal_no_YMD",
read_mark=self.last_obs_time_mark,
truncate=True,
show_actions=True,
)
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=time.time() - 600,
timestamp_end=time.time(),
limit=5,
)
actions_before_now_block = build_readable_actions(
actions=actions_before_now,
)
if actions_before_now:
if actions_before_now_block:
actions_before_now_block = f"你刚刚选择并执行过的action是\n{actions_before_now_block}"
else:
actions_before_now_block = ""
if refresh_time:
self.last_obs_time_mark = time.time()
mentioned_bonus = ""
if global_config.chat.mentioned_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你"
@ -348,29 +760,32 @@ class ActionPlanner:
action_options_block = ""
for using_actions_name, using_actions_info in current_available_actions.items():
if using_actions_info.action_parameters:
param_text = "\n"
for param_name, param_description in using_actions_info.action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip("\n")
else:
param_text = ""
if current_available_actions:
for using_actions_name, using_actions_info in current_available_actions.items():
if using_actions_info.action_parameters:
param_text = "\n"
for param_name, param_description in using_actions_info.action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in using_actions_info.action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
require_text = ""
for require_item in using_actions_info.action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info.description,
action_parameters=param_text,
action_require=require_text,
)
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info.description,
action_parameters=param_text,
action_require=require_text,
)
action_options_block += using_action_prompt
action_options_block += using_action_prompt
else:
action_options_block = ""
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"

View File

@ -361,10 +361,10 @@ def _build_readable_messages_internal(
# 创建时间戳到消息ID的映射用于在消息前添加[id]标识符
timestamp_to_id_mapping: Dict[float, str] = {}
if message_id_list:
for msg in message_id_list:
for msg_id, msg in message_id_list:
timestamp = msg.time
if timestamp is not None:
timestamp_to_id_mapping[timestamp] = msg.message_id
timestamp_to_id_mapping[timestamp] = msg_id
def process_pic_ids(content: Optional[str]) -> str:
"""处理内容中的图片ID将其替换为[图片x]格式"""
@ -477,7 +477,7 @@ def _build_readable_messages_internal(
readable_time = translate_timestamp_to_human_readable(timestamp, mode=timestamp_mode)
# 查找消息id如果有并构建id_prefix
message_id = timestamp_to_id_mapping.get(timestamp)
message_id = timestamp_to_id_mapping.get(timestamp, "")
id_prefix = f"[{message_id}]" if message_id else ""
if is_action:
@ -606,7 +606,7 @@ def build_readable_messages_with_id(
truncate: bool = False,
show_actions: bool = False,
show_pic: bool = True,
) -> Tuple[str, List[DatabaseMessages]]:
) -> Tuple[str, List[Tuple[str, DatabaseMessages]]]:
"""
将消息列表转换为可读的文本格式并返回原始(时间戳, 昵称, 内容)列表
允许通过参数控制格式化行为

View File

@ -685,7 +685,7 @@ def assign_message_ids(messages: List[DatabaseMessages]) -> List[DatabaseMessage
Returns:
List[DatabaseMessages]: 分配了唯一ID的消息列表(写入message_id属性)
"""
result: List[DatabaseMessages] = list(messages) # 复制原始消息列表
result: List[Tuple[str, DatabaseMessages]] = [] # 复制原始消息列表
used_ids = set()
len_i = len(messages)
if len_i > 100:
@ -695,7 +695,7 @@ def assign_message_ids(messages: List[DatabaseMessages]) -> List[DatabaseMessage
a = 1
b = 9
for i, _ in enumerate(result):
for i, message in enumerate(messages):
# 生成唯一的简短ID
while True:
# 使用索引+随机数生成简短ID
@ -705,7 +705,7 @@ def assign_message_ids(messages: List[DatabaseMessages]) -> List[DatabaseMessage
if message_id not in used_ids:
used_ids.add(message_id)
break
result[i].message_id = message_id
result.append((message_id, message))
return result

View File

@ -117,6 +117,9 @@ class ModelTaskConfig(ConfigBase):
planner: TaskConfig
"""规划模型配置"""
planner_small: TaskConfig
"""副规划模型配置"""
embedding: TaskConfig
"""嵌入模型配置"""

View File

@ -76,6 +76,9 @@ class ChatConfig(ConfigBase):
mentioned_bot_inevitable_reply: bool = False
"""提及 bot 必然回复"""
planner_size: int = 1
"""副规划器大小越小麦麦的动作执行能力越精细但是消耗更多token调大可以缓解429类错误"""
at_bot_inevitable_reply: bool = False
"""@bot 必然回复"""

View File

@ -115,9 +115,9 @@ class ActionInfo(ComponentInfo):
action_require: List[str] = field(default_factory=list) # 动作需求说明
associated_types: List[str] = field(default_factory=list) # 关联的消息类型
# 激活类型相关
focus_activation_type: ActionActivationType = ActionActivationType.ALWAYS
normal_activation_type: ActionActivationType = ActionActivationType.ALWAYS
activation_type: ActionActivationType = ActionActivationType.ALWAYS
focus_activation_type: ActionActivationType = ActionActivationType.ALWAYS #已弃用
normal_activation_type: ActionActivationType = ActionActivationType.ALWAYS #已弃用
activation_type: ActionActivationType = ActionActivationType.ALWAYS
random_activation_probability: float = 0.0
llm_judge_prompt: str = ""
activation_keywords: List[str] = field(default_factory=list) # 激活关键词列表

View File

@ -1,5 +1,5 @@
[inner]
version = "6.6.1"
version = "6.7.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请递增version的值
@ -67,6 +67,8 @@ max_context_size = 20 # 上下文长度
interest_rate_mode = "fast" #激活值计算模式可选fast或者accurate
planner_size = 1 # 副规划器大小越小麦麦的动作执行能力越精细但是消耗更多token调大可以缓解429类错误
mentioned_bot_inevitable_reply = true # 提及 bot 大概率回复
at_bot_inevitable_reply = true # @bot 或 提及bot 大概率回复

View File

@ -1,5 +1,5 @@
[inner]
version = "1.3.1"
version = "1.4.0"
# 配置文件版本号迭代规则同bot_config.toml
@ -117,11 +117,16 @@ model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800
[model_task_config.planner] #决策:负责决定麦麦该什么的模型
[model_task_config.planner] #决策:负责决定麦麦该什么时候回复的模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
[model_task_config.planner_small] #副决策:负责决定麦麦该做什么的模型
model_list = ["qwen3-14b"]
temperature = 0.3
max_tokens = 800
[model_task_config.emotion] #负责麦麦的情绪变化
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3