mirror of https://github.com/Mai-with-u/MaiBot.git
Merge branch 'dev' of https://github.com/MaiM-with-u/MaiBot into dev
commit
a1e9893ac1
|
|
@ -28,7 +28,7 @@ version = "1.1.1"
|
|||
```toml
|
||||
[[api_providers]]
|
||||
name = "DeepSeek" # 服务商名称(自定义)
|
||||
base_url = "https://api.deepseek.cn/v1" # API服务的基础URL
|
||||
base_url = "https://api.deepseek.com/v1" # API服务的基础URL
|
||||
api_key = "your-api-key-here" # API密钥
|
||||
client_type = "openai" # 客户端类型
|
||||
max_retry = 2 # 最大重试次数
|
||||
|
|
@ -43,19 +43,19 @@ retry_interval = 10 # 重试间隔(秒)
|
|||
| `name` | ✅ | 服务商名称,需要在模型配置中引用 | - |
|
||||
| `base_url` | ✅ | API服务的基础URL | - |
|
||||
| `api_key` | ✅ | API密钥,请替换为实际密钥 | - |
|
||||
| `client_type` | ❌ | 客户端类型:`openai`(OpenAI格式)或 `gemini`(Gemini格式,现在支持不良好) | `openai` |
|
||||
| `client_type` | ❌ | 客户端类型:`openai`(OpenAI格式)或 `gemini`(Gemini格式) | `openai` |
|
||||
| `max_retry` | ❌ | API调用失败时的最大重试次数 | 2 |
|
||||
| `timeout` | ❌ | API请求超时时间(秒) | 30 |
|
||||
| `retry_interval` | ❌ | 重试间隔时间(秒) | 10 |
|
||||
|
||||
**请注意,对于`client_type`为`gemini`的模型,`base_url`字段无效。**
|
||||
**请注意,对于`client_type`为`gemini`的模型,`retry`字段由`gemini`自己决定。**
|
||||
### 2.3 支持的服务商示例
|
||||
|
||||
#### DeepSeek
|
||||
```toml
|
||||
[[api_providers]]
|
||||
name = "DeepSeek"
|
||||
base_url = "https://api.deepseek.cn/v1"
|
||||
base_url = "https://api.deepseek.com/v1"
|
||||
api_key = "your-deepseek-api-key"
|
||||
client_type = "openai"
|
||||
```
|
||||
|
|
@ -73,7 +73,7 @@ client_type = "openai"
|
|||
```toml
|
||||
[[api_providers]]
|
||||
name = "Google"
|
||||
base_url = "https://api.google.com/v1"
|
||||
base_url = "https://generativelanguage.googleapis.com/v1beta"
|
||||
api_key = "your-google-api-key"
|
||||
client_type = "gemini" # 注意:Gemini需要使用特殊客户端
|
||||
```
|
||||
|
|
@ -131,9 +131,20 @@ enable_thinking = false # 禁用思考
|
|||
[models.extra_params]
|
||||
thinking = {type = "disabled"} # 禁用思考
|
||||
```
|
||||
|
||||
而对于`gemini`需要单独进行配置
|
||||
```toml
|
||||
[[models]]
|
||||
model_identifier = "gemini-2.5-flash"
|
||||
name = "gemini-2.5-flash"
|
||||
api_provider = "Google"
|
||||
[models.extra_params]
|
||||
thinking_budget = 0 # 禁用思考
|
||||
# thinking_budget = -1 由模型自己决定
|
||||
```
|
||||
|
||||
请注意,`extra_params` 的配置应该构成一个合法的TOML字典结构,具体内容取决于API服务商的要求。
|
||||
|
||||
**请注意,对于`client_type`为`gemini`的模型,此字段无效。**
|
||||
### 3.3 配置参数说明
|
||||
|
||||
| 参数 | 必填 | 说明 |
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ import os
|
|||
import re
|
||||
|
||||
from typing import Dict, Any, Optional
|
||||
from maim_message import UserInfo, Seg
|
||||
from maim_message import UserInfo, Seg, GroupInfo
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.config.config import global_config
|
||||
|
|
@ -27,7 +27,7 @@ PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..
|
|||
logger = get_logger("chat")
|
||||
|
||||
|
||||
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
|
||||
def _check_ban_words(text: str, userinfo: UserInfo, group_info: Optional[GroupInfo] = None) -> bool:
|
||||
"""检查消息是否包含过滤词
|
||||
|
||||
Args:
|
||||
|
|
@ -40,14 +40,14 @@ def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
|
|||
"""
|
||||
for word in global_config.message_receive.ban_words:
|
||||
if word in text:
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
chat_name = group_info.group_name if group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[过滤词识别]消息中含有{word},filtered")
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
|
||||
def _check_ban_regex(text: str, userinfo: UserInfo, group_info: Optional[GroupInfo] = None) -> bool:
|
||||
"""检查消息是否匹配过滤正则表达式
|
||||
|
||||
Args:
|
||||
|
|
@ -61,10 +61,10 @@ def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
|
|||
# 检查text是否为None或空字符串
|
||||
if text is None or not text:
|
||||
return False
|
||||
|
||||
|
||||
for pattern in global_config.message_receive.ban_msgs_regex:
|
||||
if re.search(pattern, text):
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
chat_name = group_info.group_name if group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered")
|
||||
return True
|
||||
|
|
@ -251,6 +251,18 @@ class ChatBot:
|
|||
# return
|
||||
pass
|
||||
|
||||
# 过滤检查
|
||||
if _check_ban_words(
|
||||
message.processed_plain_text,
|
||||
user_info, # type: ignore
|
||||
group_info,
|
||||
) or _check_ban_regex(
|
||||
message.raw_message, # type: ignore
|
||||
user_info, # type: ignore
|
||||
group_info,
|
||||
):
|
||||
return
|
||||
|
||||
get_chat_manager().register_message(message)
|
||||
|
||||
chat = await get_chat_manager().get_or_create_stream(
|
||||
|
|
@ -268,14 +280,6 @@ class ChatBot:
|
|||
# logger.warning(f"检测到消息中含有违法,色情,暴力,反动,敏感内容,消息内容:{message.processed_plain_text},发送者:{message.message_info.user_info.user_nickname}")
|
||||
# return
|
||||
|
||||
# 过滤检查
|
||||
if _check_ban_words(message.processed_plain_text, chat, user_info) or _check_ban_regex( # type: ignore
|
||||
message.raw_message, # type: ignore
|
||||
chat,
|
||||
user_info, # type: ignore
|
||||
):
|
||||
return
|
||||
|
||||
# 命令处理 - 使用新插件系统检查并处理命令
|
||||
is_command, cmd_result, continue_process = await self._process_commands_with_new_system(message)
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
import asyncio
|
||||
import io
|
||||
import base64
|
||||
from typing import Callable, AsyncIterator, Optional, Coroutine, Any, List
|
||||
from typing import Callable, AsyncIterator, Optional, Coroutine, Any, List, Dict
|
||||
|
||||
from google import genai
|
||||
from google.genai.types import (
|
||||
|
|
@ -17,6 +17,7 @@ from google.genai.types import (
|
|||
EmbedContentResponse,
|
||||
EmbedContentConfig,
|
||||
SafetySetting,
|
||||
HttpOptions,
|
||||
HarmCategory,
|
||||
HarmBlockThreshold,
|
||||
)
|
||||
|
|
@ -345,22 +346,27 @@ class GeminiClient(BaseClient):
|
|||
|
||||
def __init__(self, api_provider: APIProvider):
|
||||
super().__init__(api_provider)
|
||||
|
||||
# 增加传入参数处理
|
||||
http_options_kwargs: Dict[str, Any] = {}
|
||||
|
||||
# 秒转换为毫秒传入
|
||||
if api_provider.timeout is not None:
|
||||
http_options_kwargs["timeout"] = int(api_provider.timeout * 1000)
|
||||
|
||||
# 传入并处理地址和版本(必须为Gemini格式)
|
||||
if api_provider.base_url:
|
||||
parts = api_provider.base_url.rstrip("/").rsplit("/", 1)
|
||||
if len(parts) == 2 and parts[1].startswith("v"):
|
||||
http_options_kwargs["base_url"] = f"{parts[0]}/"
|
||||
http_options_kwargs["api_version"] = parts[1]
|
||||
else:
|
||||
http_options_kwargs["base_url"] = api_provider.base_url
|
||||
self.client = genai.Client(
|
||||
http_options=HttpOptions(**http_options_kwargs),
|
||||
api_key=api_provider.api_key,
|
||||
) # 这里和openai不一样,gemini会自己决定自己是否需要retry
|
||||
|
||||
# 尝试传入自定义base_url(实验性,必须为Gemini格式)
|
||||
if hasattr(api_provider, "base_url") and api_provider.base_url:
|
||||
base_url = api_provider.base_url.rstrip("/") # 去掉末尾 /
|
||||
self.client._api_client._http_options.base_url = base_url
|
||||
|
||||
# 如果 base_url 已经带了 /v1 或 /v1beta,就清掉 SDK 的 api_version
|
||||
if base_url.endswith("/v1") or base_url.endswith("/v1beta"):
|
||||
self.client._api_client._http_options.api_version = None
|
||||
|
||||
# 让 GeminiClient 内部也能访问底层 api_client
|
||||
self._api_client = self.client._api_client
|
||||
|
||||
@staticmethod
|
||||
def clamp_thinking_budget(tb: int, model_id: str) -> int:
|
||||
"""
|
||||
|
|
@ -380,20 +386,29 @@ class GeminiClient(BaseClient):
|
|||
limits = THINKING_BUDGET_LIMITS[key]
|
||||
break
|
||||
|
||||
# 特殊值处理
|
||||
# 预算值处理
|
||||
if tb == THINKING_BUDGET_AUTO:
|
||||
return THINKING_BUDGET_AUTO
|
||||
if tb == THINKING_BUDGET_DISABLED:
|
||||
if limits and limits.get("can_disable", False):
|
||||
return THINKING_BUDGET_DISABLED
|
||||
return limits["min"] if limits else THINKING_BUDGET_AUTO
|
||||
if limits:
|
||||
logger.warning(f"模型 {model_id} 不支持禁用思考预算,已回退到最小值 {limits['min']}")
|
||||
return limits["min"]
|
||||
return THINKING_BUDGET_AUTO
|
||||
|
||||
# 已知模型裁剪到范围
|
||||
# 已知模型范围裁剪 + 提示
|
||||
if limits:
|
||||
return max(limits["min"], min(tb, limits["max"]))
|
||||
if tb < limits["min"]:
|
||||
logger.warning(f"模型 {model_id} 的 thinking_budget={tb} 过小,已调整为最小值 {limits['min']}")
|
||||
return limits["min"]
|
||||
if tb > limits["max"]:
|
||||
logger.warning(f"模型 {model_id} 的 thinking_budget={tb} 过大,已调整为最大值 {limits['max']}")
|
||||
return limits["max"]
|
||||
return tb
|
||||
|
||||
# 未知模型,返回动态模式
|
||||
logger.warning(f"模型 {model_id} 未在 THINKING_BUDGET_LIMITS 中定义,将使用动态模式 tb=-1 兼容。")
|
||||
# 未知模型 → 默认自动模式
|
||||
logger.warning(f"模型 {model_id} 未在 THINKING_BUDGET_LIMITS 中定义,已启用模型自动预算兼容")
|
||||
return THINKING_BUDGET_AUTO
|
||||
|
||||
async def get_response(
|
||||
|
|
@ -448,7 +463,9 @@ class GeminiClient(BaseClient):
|
|||
try:
|
||||
tb = int(extra_params["thinking_budget"])
|
||||
except (ValueError, TypeError):
|
||||
logger.warning(f"无效的 thinking_budget 值 {extra_params['thinking_budget']},将使用默认动态模式 {tb}")
|
||||
logger.warning(
|
||||
f"无效的 thinking_budget 值 {extra_params['thinking_budget']},将使用模型自动预算模式 {tb}"
|
||||
)
|
||||
# 裁剪到模型支持的范围
|
||||
tb = self.clamp_thinking_budget(tb, model_info.model_identifier)
|
||||
|
||||
|
|
|
|||
|
|
@ -26,18 +26,6 @@ install(extra_lines=3)
|
|||
|
||||
logger = get_logger("model_utils")
|
||||
|
||||
# 常见Error Code Mapping
|
||||
error_code_mapping = {
|
||||
400: "参数不正确",
|
||||
401: "API key 错误,认证失败,请检查 config/model_config.toml 中的配置是否正确",
|
||||
402: "账号余额不足",
|
||||
403: "需要实名,或余额不足",
|
||||
404: "Not Found",
|
||||
429: "请求过于频繁,请稍后再试",
|
||||
500: "服务器内部故障",
|
||||
503: "服务器负载过高",
|
||||
}
|
||||
|
||||
|
||||
class RequestType(Enum):
|
||||
"""请求类型枚举"""
|
||||
|
|
@ -267,14 +255,14 @@ class LLMRequest:
|
|||
extra_params=model_info.extra_params,
|
||||
)
|
||||
elif request_type == RequestType.EMBEDDING:
|
||||
assert embedding_input is not None
|
||||
assert embedding_input is not None, "嵌入输入不能为空"
|
||||
return await client.get_embedding(
|
||||
model_info=model_info,
|
||||
embedding_input=embedding_input,
|
||||
extra_params=model_info.extra_params,
|
||||
)
|
||||
elif request_type == RequestType.AUDIO:
|
||||
assert audio_base64 is not None
|
||||
assert audio_base64 is not None, "音频Base64不能为空"
|
||||
return await client.get_audio_transcriptions(
|
||||
model_info=model_info,
|
||||
audio_base64=audio_base64,
|
||||
|
|
@ -365,24 +353,23 @@ class LLMRequest:
|
|||
embedding_input=embedding_input,
|
||||
audio_base64=audio_base64,
|
||||
)
|
||||
total_tokens, penalty, usage_penalty = self.model_usage[model_info.name]
|
||||
if response_usage := response.usage:
|
||||
total_tokens += response_usage.total_tokens
|
||||
self.model_usage[model_info.name] = (total_tokens, penalty, usage_penalty - 1)
|
||||
return response, model_info
|
||||
|
||||
except ModelAttemptFailed as e:
|
||||
last_exception = e.original_exception or e
|
||||
logger.warning(f"模型 '{model_info.name}' 尝试失败,切换到下一个模型。原因: {e}")
|
||||
total_tokens, penalty, usage_penalty = self.model_usage[model_info.name]
|
||||
self.model_usage[model_info.name] = (total_tokens, penalty + 1, usage_penalty)
|
||||
self.model_usage[model_info.name] = (total_tokens, penalty + 1, usage_penalty - 1)
|
||||
failed_models_this_request.add(model_info.name)
|
||||
|
||||
if isinstance(last_exception, RespNotOkException) and last_exception.status_code == 400:
|
||||
logger.error("收到不可恢复的客户端错误 (400),中止所有尝试。")
|
||||
raise last_exception from e
|
||||
|
||||
finally:
|
||||
total_tokens, penalty, usage_penalty = self.model_usage[model_info.name]
|
||||
if usage_penalty > 0:
|
||||
self.model_usage[model_info.name] = (total_tokens, penalty, usage_penalty - 1)
|
||||
|
||||
logger.error(f"所有 {max_attempts} 个模型均尝试失败。")
|
||||
if last_exception:
|
||||
raise last_exception
|
||||
|
|
|
|||
Loading…
Reference in New Issue