fix:修复私聊记忆

pull/1348/head
SengokuCola 2025-11-09 17:35:43 +08:00
parent 7b3793f366
commit 98c85d8d1d
6 changed files with 14 additions and 377 deletions

View File

@ -238,7 +238,6 @@ class BrainChatting:
async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()): async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()):
asyncio.create_task(self.expression_learner.trigger_learning_for_chat()) asyncio.create_task(self.expression_learner.trigger_learning_for_chat())
asyncio.create_task(global_memory_chest.build_running_content(chat_id=self.stream_id))
cycle_timers, thinking_id = self.start_cycle() cycle_timers, thinking_id = self.start_cycle()
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考") logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考")

View File

@ -278,22 +278,6 @@ class DefaultReplyer:
mood_state = await mood_manager.get_mood_by_chat_id(self.chat_stream.stream_id).get_mood() mood_state = await mood_manager.get_mood_by_chat_id(self.chat_stream.stream_id).get_mood()
return f"你现在的心情是:{mood_state}" return f"你现在的心情是:{mood_state}"
async def build_memory_block(self) -> str:
"""构建记忆块
"""
# if not global_config.memory.enable_memory:
# return ""
if global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id):
return f"你有以下记忆:\n{global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id)}"
else:
return ""
async def build_question_block(self) -> str:
"""构建问题块"""
# 问题跟踪功能已移除,返回空字符串
return ""
async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str: async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str:
"""构建工具信息块 """构建工具信息块
@ -801,12 +785,11 @@ class DefaultReplyer:
show_actions=True, show_actions=True,
) )
# 并行执行个构建任务 # 并行执行个构建任务
task_results = await asyncio.gather( task_results = await asyncio.gather(
self._time_and_run_task( self._time_and_run_task(
self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits" self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits"
), ),
self._time_and_run_task(self.build_memory_block(), "memory_block"),
self._time_and_run_task( self._time_and_run_task(
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info" self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
), ),
@ -814,7 +797,6 @@ class DefaultReplyer:
self._time_and_run_task(self.build_actions_prompt(available_actions, chosen_actions), "actions_info"), self._time_and_run_task(self.build_actions_prompt(available_actions, chosen_actions), "actions_info"),
self._time_and_run_task(self.build_personality_prompt(), "personality_prompt"), self._time_and_run_task(self.build_personality_prompt(), "personality_prompt"),
self._time_and_run_task(self.build_mood_state_prompt(), "mood_state_prompt"), self._time_and_run_task(self.build_mood_state_prompt(), "mood_state_prompt"),
self._time_and_run_task(self.build_question_block(), "question_block"),
self._time_and_run_task( self._time_and_run_task(
build_memory_retrieval_prompt( build_memory_retrieval_prompt(
chat_talking_prompt_short, sender, target, self.chat_stream, self.tool_executor chat_talking_prompt_short, sender, target, self.chat_stream, self.tool_executor
@ -827,14 +809,11 @@ class DefaultReplyer:
task_name_mapping = { task_name_mapping = {
"expression_habits": "选取表达方式", "expression_habits": "选取表达方式",
"relation_info": "感受关系", "relation_info": "感受关系",
# "memory_block": "回忆",
"memory_block": "记忆",
"tool_info": "使用工具", "tool_info": "使用工具",
"prompt_info": "获取知识", "prompt_info": "获取知识",
"actions_info": "动作信息", "actions_info": "动作信息",
"personality_prompt": "人格信息", "personality_prompt": "人格信息",
"mood_state_prompt": "情绪状态", "mood_state_prompt": "情绪状态",
"question_block": "问题",
"memory_retrieval": "记忆检索", "memory_retrieval": "记忆检索",
} }
@ -859,13 +838,10 @@ class DefaultReplyer:
expression_habits_block: str expression_habits_block: str
selected_expressions: List[int] selected_expressions: List[int]
# relation_info: str = results_dict["relation_info"] # relation_info: str = results_dict["relation_info"]
# memory_block: str = results_dict["memory_block"]
memory_block: str = results_dict["memory_block"]
tool_info: str = results_dict["tool_info"] tool_info: str = results_dict["tool_info"]
prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果 prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果
actions_info: str = results_dict["actions_info"] actions_info: str = results_dict["actions_info"]
personality_prompt: str = results_dict["personality_prompt"] personality_prompt: str = results_dict["personality_prompt"]
question_block: str = results_dict["question_block"]
memory_retrieval: str = results_dict["memory_retrieval"] memory_retrieval: str = results_dict["memory_retrieval"]
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target) keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
mood_state_prompt: str = results_dict["mood_state_prompt"] mood_state_prompt: str = results_dict["mood_state_prompt"]
@ -908,10 +884,8 @@ class DefaultReplyer:
"replyer_prompt", "replyer_prompt",
expression_habits_block=expression_habits_block, expression_habits_block=expression_habits_block,
tool_info_block=tool_info, tool_info_block=tool_info,
memory_block=memory_block,
knowledge_prompt=prompt_info, knowledge_prompt=prompt_info,
mood_state=mood_state_prompt, mood_state=mood_state_prompt,
# memory_block=memory_block,
# relation_info_block=relation_info, # relation_info_block=relation_info,
extra_info_block=extra_info_block, extra_info_block=extra_info_block,
identity=personality_prompt, identity=personality_prompt,
@ -923,7 +897,6 @@ class DefaultReplyer:
reply_style=global_config.personality.reply_style, reply_style=global_config.personality.reply_style,
keywords_reaction_prompt=keywords_reaction_prompt, keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block, moderation_prompt=moderation_prompt_block,
question_block=question_block,
memory_retrieval=memory_retrieval, memory_retrieval=memory_retrieval,
chat_prompt=chat_prompt_block, chat_prompt=chat_prompt_block,
), selected_expressions ), selected_expressions

View File

@ -6,7 +6,6 @@ import re
from typing import List, Optional, Dict, Any, Tuple from typing import List, Optional, Dict, Any, Tuple
from datetime import datetime from datetime import datetime
from src.memory_system.Memory_chest import global_memory_chest
from src.common.logger import get_logger from src.common.logger import get_logger
from src.common.data_models.database_data_model import DatabaseMessages from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.info_data_model import ActionPlannerInfo from src.common.data_models.info_data_model import ActionPlannerInfo
@ -37,10 +36,12 @@ from src.plugin_system.apis import llm_api
from src.chat.replyer.prompt.lpmm_prompt import init_lpmm_prompt from src.chat.replyer.prompt.lpmm_prompt import init_lpmm_prompt
from src.chat.replyer.prompt.replyer_prompt import init_replyer_prompt from src.chat.replyer.prompt.replyer_prompt import init_replyer_prompt
from src.chat.replyer.prompt.rewrite_prompt import init_rewrite_prompt from src.chat.replyer.prompt.rewrite_prompt import init_rewrite_prompt
from src.memory_system.memory_retrieval import init_memory_retrieval_prompt, build_memory_retrieval_prompt
init_lpmm_prompt() init_lpmm_prompt()
init_replyer_prompt() init_replyer_prompt()
init_rewrite_prompt() init_rewrite_prompt()
init_memory_retrieval_prompt()
logger = get_logger("replyer") logger = get_logger("replyer")
@ -291,14 +292,6 @@ class PrivateReplyer:
return f"你现在的心情是:{mood_state}" return f"你现在的心情是:{mood_state}"
async def build_memory_block(self) -> str:
"""构建记忆块
"""
if global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id):
return f"你有以下记忆:\n{global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id)}"
else:
return ""
async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str: async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str:
"""构建工具信息块 """构建工具信息块
@ -712,7 +705,7 @@ class PrivateReplyer:
show_actions=True, show_actions=True,
) )
# 并行执行个构建任务 # 并行执行个构建任务
task_results = await asyncio.gather( task_results = await asyncio.gather(
self._time_and_run_task( self._time_and_run_task(
self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits" self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits"
@ -720,8 +713,6 @@ class PrivateReplyer:
self._time_and_run_task( self._time_and_run_task(
self.build_relation_info(chat_talking_prompt_short, sender), "relation_info" self.build_relation_info(chat_talking_prompt_short, sender), "relation_info"
), ),
self._time_and_run_task(self.build_memory_block(), "memory_block"),
# self._time_and_run_task(self.build_memory_block(message_list_before_short, target), "memory_block"),
self._time_and_run_task( self._time_and_run_task(
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info" self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
), ),
@ -729,18 +720,24 @@ class PrivateReplyer:
self._time_and_run_task(self.build_actions_prompt(available_actions, chosen_actions), "actions_info"), self._time_and_run_task(self.build_actions_prompt(available_actions, chosen_actions), "actions_info"),
self._time_and_run_task(self.build_personality_prompt(), "personality_prompt"), self._time_and_run_task(self.build_personality_prompt(), "personality_prompt"),
self._time_and_run_task(self.build_mood_state_prompt(), "mood_state_prompt"), self._time_and_run_task(self.build_mood_state_prompt(), "mood_state_prompt"),
self._time_and_run_task(
build_memory_retrieval_prompt(
chat_talking_prompt_short, sender, target, self.chat_stream, self.tool_executor
),
"memory_retrieval",
),
) )
# 任务名称中英文映射 # 任务名称中英文映射
task_name_mapping = { task_name_mapping = {
"expression_habits": "选取表达方式", "expression_habits": "选取表达方式",
"relation_info": "感受关系", "relation_info": "感受关系",
"memory_block": "回忆",
"tool_info": "使用工具", "tool_info": "使用工具",
"prompt_info": "获取知识", "prompt_info": "获取知识",
"actions_info": "动作信息", "actions_info": "动作信息",
"personality_prompt": "人格信息", "personality_prompt": "人格信息",
"mood_state_prompt": "情绪状态", "mood_state_prompt": "情绪状态",
"memory_retrieval": "记忆检索",
} }
# 处理结果 # 处理结果
@ -764,12 +761,12 @@ class PrivateReplyer:
expression_habits_block: str expression_habits_block: str
selected_expressions: List[int] selected_expressions: List[int]
relation_info: str = results_dict["relation_info"] relation_info: str = results_dict["relation_info"]
memory_block: str = results_dict["memory_block"]
tool_info: str = results_dict["tool_info"] tool_info: str = results_dict["tool_info"]
prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果 prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果
actions_info: str = results_dict["actions_info"] actions_info: str = results_dict["actions_info"]
personality_prompt: str = results_dict["personality_prompt"] personality_prompt: str = results_dict["personality_prompt"]
mood_state_prompt: str = results_dict["mood_state_prompt"] mood_state_prompt: str = results_dict["mood_state_prompt"]
memory_retrieval: str = results_dict["memory_retrieval"]
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target) keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
if extra_info: if extra_info:
@ -806,7 +803,6 @@ class PrivateReplyer:
tool_info_block=tool_info, tool_info_block=tool_info,
knowledge_prompt=prompt_info, knowledge_prompt=prompt_info,
mood_state=mood_state_prompt, mood_state=mood_state_prompt,
memory_block=memory_block,
relation_info_block=relation_info, relation_info_block=relation_info,
extra_info_block=extra_info_block, extra_info_block=extra_info_block,
identity=personality_prompt, identity=personality_prompt,
@ -819,6 +815,7 @@ class PrivateReplyer:
reply_style=global_config.personality.reply_style, reply_style=global_config.personality.reply_style,
keywords_reaction_prompt=keywords_reaction_prompt, keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block, moderation_prompt=moderation_prompt_block,
memory_retrieval=memory_retrieval,
chat_prompt=chat_prompt_block, chat_prompt=chat_prompt_block,
), selected_expressions ), selected_expressions
else: else:
@ -828,7 +825,6 @@ class PrivateReplyer:
tool_info_block=tool_info, tool_info_block=tool_info,
knowledge_prompt=prompt_info, knowledge_prompt=prompt_info,
mood_state=mood_state_prompt, mood_state=mood_state_prompt,
memory_block=memory_block,
relation_info_block=relation_info, relation_info_block=relation_info,
extra_info_block=extra_info_block, extra_info_block=extra_info_block,
identity=personality_prompt, identity=personality_prompt,
@ -840,6 +836,7 @@ class PrivateReplyer:
keywords_reaction_prompt=keywords_reaction_prompt, keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block, moderation_prompt=moderation_prompt_block,
sender_name=sender, sender_name=sender,
memory_retrieval=memory_retrieval,
chat_prompt=chat_prompt_block, chat_prompt=chat_prompt_block,
), selected_expressions ), selected_expressions

View File

@ -1,34 +0,0 @@
{
"manifest_version": 1,
"name": "Memory Build组件",
"version": "1.0.0",
"description": "可以构建和管理记忆",
"author": {
"name": "Mai",
"url": "https://github.com/MaiM-with-u"
},
"license": "GPL-v3.0-or-later",
"host_application": {
"min_version": "0.10.4"
},
"homepage_url": "https://github.com/MaiM-with-u/maibot",
"repository_url": "https://github.com/MaiM-with-u/maibot",
"keywords": ["memory", "build", "built-in"],
"categories": ["Memory"],
"default_locale": "zh-CN",
"locales_path": "_locales",
"plugin_info": {
"is_built_in": true,
"plugin_type": "action_provider",
"components": [
{
"type": "build_memory",
"name": "build_memory",
"description": "构建记忆"
}
]
}
}

View File

@ -1,245 +0,0 @@
import asyncio
from datetime import datetime
from src.common.logger import get_logger
from src.llm_models.payload_content.tool_option import ToolParamType
from src.memory_system.Memory_chest import global_memory_chest
from src.plugin_system.base.base_tool import BaseTool
from src.plugin_system.apis.message_api import get_messages_by_time_in_chat, build_readable_messages
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
from typing import Any
logger = get_logger("memory")
def parse_datetime_to_timestamp(value: str) -> float:
"""
接受多种常见格式并转换为时间戳
支持示例
- 2025-09-29
- 2025-09-29 00:00:00
- 2025/09/29 00:00
- 2025-09-29T00:00:00
"""
value = value.strip()
fmts = [
"%Y-%m-%d %H:%M:%S",
"%Y-%m-%d %H:%M",
"%Y/%m/%d %H:%M:%S",
"%Y/%m/%d %H:%M",
"%Y-%m-%d",
"%Y/%m/%d",
"%Y-%m-%dT%H:%M:%S",
"%Y-%m-%dT%H:%M",
]
last_err = None
for fmt in fmts:
try:
dt = datetime.strptime(value, fmt)
return dt.timestamp()
except Exception as e:
last_err = e
raise ValueError(f"无法解析时间: {value} ({last_err})")
def parse_time_range(time_range: str) -> tuple[float, float]:
"""
解析时间范围字符串返回开始和结束时间戳
格式: "YYYY-MM-DD HH:MM:SS - YYYY-MM-DD HH:MM:SS"
"""
if " - " not in time_range:
raise ValueError("时间范围格式错误,应使用 ' - ' 分隔开始和结束时间")
start_str, end_str = time_range.split(" - ", 1)
start_timestamp = parse_datetime_to_timestamp(start_str.strip())
end_timestamp = parse_datetime_to_timestamp(end_str.strip())
if start_timestamp > end_timestamp:
raise ValueError("开始时间不能晚于结束时间")
return start_timestamp, end_timestamp
class GetMemoryTool(BaseTool):
"""获取用户信息"""
name = "get_memory"
description = "在记忆中搜索,获取某个问题的答案,可以指定搜索的时间范围或时间点"
parameters = [
("question", ToolParamType.STRING, "需要获取答案的问题", True, None),
("time_point", ToolParamType.STRING, "需要获取记忆的时间点格式为YYYY-MM-DD HH:MM:SS", False, None),
("time_range", ToolParamType.STRING, "需要获取记忆的时间范围格式为YYYY-MM-DD HH:MM:SS - YYYY-MM-DD HH:MM:SS", False, None)
]
available_for_llm = True
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
"""执行记忆搜索
Args:
function_args: 工具参数
Returns:
dict: 工具执行结果
"""
question: str = function_args.get("question") # type: ignore
time_point: str = function_args.get("time_point") # type: ignore
time_range: str = function_args.get("time_range") # type: ignore
# 检查是否指定了时间参数
has_time_params = bool(time_point or time_range)
if has_time_params and not self.chat_id:
return {"content": f"问题:{question}无法获取聊天记录缺少chat_id"}
# 创建并行任务
tasks = []
# 原任务:从记忆仓库获取答案
memory_task = asyncio.create_task(
global_memory_chest.get_answer_by_question(question=question)
)
tasks.append(("memory", memory_task))
# 新任务:从聊天记录获取答案(如果指定了时间参数)
chat_task = None
if has_time_params:
chat_task = asyncio.create_task(
self._get_answer_from_chat_history(question, time_point, time_range)
)
tasks.append(("chat", chat_task))
# 等待所有任务完成
results = {}
for task_name, task in tasks:
try:
results[task_name] = await task
except Exception as e:
logger.error(f"任务 {task_name} 执行失败: {e}")
results[task_name] = None
# 处理结果
memory_answer = results.get("memory")
chat_answer = results.get("chat")
# 构建返回内容
content_parts = []
if memory_answer:
content_parts.append(f"对问题'{question}',你回忆的信息是:{memory_answer}")
if chat_answer:
content_parts.append(f"对问题'{question}',基于聊天记录的回答:{chat_answer}")
elif has_time_params:
if time_point:
content_parts.append(f"{time_point} 的时间点,你没有参与聊天")
elif time_range:
content_parts.append(f"{time_range} 的时间范围内,你没有参与聊天")
if content_parts:
retrieval_content = f"问题:{question}" + "\n".join(content_parts)
return {"content": retrieval_content}
else:
return {"content": ""}
async def _get_answer_from_chat_history(self, question: str, time_point: str = None, time_range: str = None) -> str:
"""从聊天记录中获取问题的答案"""
try:
# 确定时间范围
print(f"time_point: {time_point}, time_range: {time_range}")
# 检查time_range的两个时间值是否相同如果相同则按照time_point处理
if time_range and not time_point:
try:
start_timestamp, end_timestamp = parse_time_range(time_range)
if start_timestamp == end_timestamp:
# 两个时间值相同按照time_point处理
time_point = time_range.split(" - ")[0].strip()
time_range = None
print(f"time_range两个值相同按照time_point处理: {time_point}")
except Exception as e:
logger.warning(f"解析time_range失败: {e}")
if time_point:
# 时间点搜索前后25条记录
target_timestamp = parse_datetime_to_timestamp(time_point)
# 获取前后各25条记录总共50条
messages_before = get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=0,
end_time=target_timestamp,
limit=25,
limit_mode="latest"
)
messages_after = get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=target_timestamp,
end_time=float('inf'),
limit=25,
limit_mode="earliest"
)
messages = messages_before + messages_after
elif time_range:
# 时间范围搜索范围内最多50条记录
start_timestamp, end_timestamp = parse_time_range(time_range)
messages = get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=start_timestamp,
end_time=end_timestamp,
limit=50,
limit_mode="latest"
)
else:
return "未指定时间参数"
if not messages:
return "没有找到相关聊天记录"
# 将消息转换为可读格式
chat_content = build_readable_messages(messages, timestamp_mode="relative")
if not chat_content.strip():
return "聊天记录为空"
# 使用LLM分析聊天内容并回答问题
try:
llm_request = LLMRequest(
model_set=model_config.model_task_config.utils_small,
request_type="chat_history_analysis"
)
analysis_prompt = f"""请根据以下聊天记录内容,回答用户的问题。请输出一段平文本,不要有特殊格式。
聊天记录
{chat_content}
用户问题{question}
请仔细分析聊天记录提取与问题相关的信息并给出准确的答案如果聊天记录中没有相关信息无法回答问题输出"无有效信息"即可不要输出其他内容
答案"""
print(f"analysis_prompt: {analysis_prompt}")
response, (reasoning, model_name, tool_calls) = await llm_request.generate_response_async(
prompt=analysis_prompt,
temperature=0.3,
max_tokens=256
)
print(f"response: {response}")
if "无有效信息" in response:
return ""
return response
except Exception as llm_error:
logger.error(f"LLM分析聊天记录失败: {llm_error}")
# 如果LLM分析失败返回聊天内容的摘要
if len(chat_content) > 300:
chat_content = chat_content[:300] + "..."
return chat_content
except Exception as e:
logger.error(f"从聊天记录获取答案失败: {e}")
return ""

View File

@ -1,53 +0,0 @@
from typing import List, Tuple, Type
# 导入新插件系统
from src.plugin_system import BasePlugin, ComponentInfo, register_plugin
from src.plugin_system.base.config_types import ConfigField
# 导入依赖的系统组件
from src.common.logger import get_logger
from src.plugins.built_in.memory.build_memory import GetMemoryTool
logger = get_logger("memory_build")
@register_plugin
class MemoryBuildPlugin(BasePlugin):
"""记忆构建插件
系统内置插件提供基础的聊天交互功能
- GetMemory: 获取记忆
注意插件基本信息优先从_manifest.json文件中读取
"""
# 插件基本信息
plugin_name: str = "memory_build" # 内部标识符
enable_plugin: bool = True
dependencies: list[str] = [] # 插件依赖列表
python_dependencies: list[str] = [] # Python包依赖列表
config_file_name: str = "config.toml"
# 配置节描述
config_section_descriptions = {
"plugin": "插件启用配置",
"components": "核心组件启用配置",
}
# 配置Schema定义
config_schema: dict = {
"plugin": {
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
"config_version": ConfigField(type=str, default="1.1.1", description="配置文件版本"),
},
}
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件列表"""
# --- 根据配置注册组件 ---
components = []
components.append((GetMemoryTool.get_tool_info(), GetMemoryTool))
return components