diff --git a/src/chat/heart_flow/brain_chat.py b/src/chat/brain_chat/brain_chat.py similarity index 90% rename from src/chat/heart_flow/brain_chat.py rename to src/chat/brain_chat/brain_chat.py index 457737fc..e631f88a 100644 --- a/src/chat/heart_flow/brain_chat.py +++ b/src/chat/brain_chat/brain_chat.py @@ -12,7 +12,7 @@ from src.common.data_models.message_data_model import ReplyContentType from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager from src.chat.utils.prompt_builder import global_prompt_manager from src.chat.utils.timer_calculator import Timer -from src.chat.planner_actions.planner import ActionPlanner +from src.chat.brain_chat.brain_planner import BrainPlanner from src.chat.planner_actions.action_modifier import ActionModifier from src.chat.planner_actions.action_manager import ActionManager from src.chat.heart_flow.hfc_utils import CycleDetail @@ -22,8 +22,6 @@ from src.person_info.person_info import Person from src.plugin_system.base.component_types import EventType, ActionInfo from src.plugin_system.core import events_manager from src.plugin_system.apis import generator_api, send_api, message_api, database_api -from src.mais4u.mai_think import mai_thinking_manager -from src.mais4u.s4u_config import s4u_config from src.chat.utils.chat_message_builder import ( build_readable_messages_with_id, get_raw_msg_before_timestamp_with_chat, @@ -83,7 +81,7 @@ class BrainChatting: self.expression_learner = expression_learner_manager.get_expression_learner(self.stream_id) self.action_manager = ActionManager() - self.action_planner = ActionPlanner(chat_id=self.stream_id, action_manager=self.action_manager) + self.action_planner = BrainPlanner(chat_id=self.stream_id, action_manager=self.action_manager) self.action_modifier = ActionModifier(action_manager=self.action_manager, chat_id=self.stream_id) # 循环控制内部状态 @@ -97,9 +95,8 @@ class BrainChatting: self.last_read_time = time.time() - 2 - self.talk_threshold = global_config.chat.talk_value - - self.no_reply_until_call = False + self.more_plan = False + async def start(self): """检查是否需要启动主循环,如果未激活则启动。""" @@ -173,28 +170,11 @@ class BrainChatting: ) if len(recent_messages_list) >= 1: - # !处理no_reply_until_call逻辑 - if self.no_reply_until_call: - for message in recent_messages_list: - if ( - message.is_mentioned - or message.is_at - or len(recent_messages_list) >= 8 - or time.time() - self.last_read_time > 600 - ): - self.no_reply_until_call = False - break - # 没有提到,继续保持沉默 - if self.no_reply_until_call: - # logger.info(f"{self.log_prefix} 没有提到,继续保持沉默") - await asyncio.sleep(1) - return True - self.last_read_time = time.time() - await self._observe( recent_messages_list=recent_messages_list ) + else: # Normal模式:消息数量不足,等待 await asyncio.sleep(0.2) @@ -259,9 +239,6 @@ class BrainChatting: recent_messages_list = [] reply_text = "" # 初始化reply_text变量,避免UnboundLocalError - if s4u_config.enable_s4u: - await send_typing() - async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()): await self.expression_learner.trigger_learning_for_chat() @@ -314,23 +291,6 @@ class BrainChatting: available_actions=available_actions, ) - has_reply = False - for action in action_to_use_info: - if action.action_type == "reply": - has_reply = True - break - - if not has_reply: - action_to_use_info.append( - ActionPlannerInfo( - action_type="reply", - reasoning="进行回复", - action_data={}, - action_message=recent_messages_list[0], - available_actions=available_actions, - ) - ) - # 3. 并行执行所有动作 action_tasks = [ asyncio.create_task( @@ -392,12 +352,6 @@ class BrainChatting: self.end_cycle(loop_info, cycle_timers) self.print_cycle_info(cycle_timers) - """S4U内容,暂时保留""" - if s4u_config.enable_s4u: - await stop_typing() - await mai_thinking_manager.get_mai_think(self.stream_id).do_think_after_response(reply_text) - """S4U内容,暂时保留""" - return True async def _main_chat_loop(self): @@ -554,11 +508,6 @@ class BrainChatting: await asyncio.sleep(action_planner_info.action_data["time"]) return {"action_type": "wait_time", "success": True, "reply_text": "", "command": ""} - elif action_planner_info.action_type == "no_reply_until_call": - logger.info(f"{self.log_prefix} 保持沉默,直到有人直接叫的名字") - self.no_reply_until_call = True - return {"action_type": "no_reply_until_call", "success": True, "reply_text": "", "command": ""} - elif action_planner_info.action_type == "reply": try: success, llm_response = await generator_api.generate_reply( diff --git a/src/chat/brain_chat/brain_planner.py b/src/chat/brain_chat/brain_planner.py new file mode 100644 index 00000000..6ad227dc --- /dev/null +++ b/src/chat/brain_chat/brain_planner.py @@ -0,0 +1,541 @@ +import json +import time +import traceback +import random +import re +from typing import Dict, Optional, Tuple, List, TYPE_CHECKING +from rich.traceback import install +from datetime import datetime +from json_repair import repair_json + +from src.llm_models.utils_model import LLMRequest +from src.config.config import global_config, model_config +from src.common.logger import get_logger +from src.common.data_models.info_data_model import ActionPlannerInfo +from src.chat.utils.prompt_builder import Prompt, global_prompt_manager +from src.chat.utils.chat_message_builder import ( + build_readable_actions, + get_actions_by_timestamp_with_chat, + build_readable_messages_with_id, + get_raw_msg_before_timestamp_with_chat, +) +from src.chat.utils.utils import get_chat_type_and_target_info +from src.chat.planner_actions.action_manager import ActionManager +from src.chat.message_receive.chat_stream import get_chat_manager +from src.plugin_system.base.component_types import ActionInfo, ComponentType, ActionActivationType +from src.plugin_system.core.component_registry import component_registry + +if TYPE_CHECKING: + from src.common.data_models.info_data_model import TargetPersonInfo + from src.common.data_models.database_data_model import DatabaseMessages + +logger = get_logger("planner") + +install(extra_lines=3) + + +def init_prompt(): + Prompt( + """ +{time_block} +{name_block} +你的兴趣是:{interest} +{chat_context_description},以下是具体的聊天内容 +**聊天内容** +{chat_content_block} + +**动作记录** +{actions_before_now_block} + +**可用的action** +reply +动作描述: +进行回复,你可以自然的顺着正在进行的聊天内容进行回复或自然的提出一个问题 +{{ + "action": "reply", + "target_message_id":"想要回复的消息id", + "reason":"回复的原因" +}} + +no_reply +动作描述: +保持沉默,等待对方发言 +{{ + "action": "no_reply", +}} + +{action_options_text} + +请选择合适的action,并说明触发action的消息id和选择该action的原因。消息id格式:m+数字 +先输出你的选择思考理由,再输出你选择的action,理由是一段平文本,不要分点,精简。 +**动作选择要求** +请你根据聊天内容,用户的最新消息和以下标准选择合适的动作: +{plan_style} +{moderation_prompt} + +请选择所有符合使用要求的action,动作用json格式输出,如果输出多个json,每个json都要单独用```json包裹,你可以重复使用同一个动作或不同动作: +**示例** +// 理由文本 +```json +{{ + "action":"动作名", + "target_message_id":"触发动作的消息id", + //对应参数 +}} +``` +```json +{{ + "action":"动作名", + "target_message_id":"触发动作的消息id", + //对应参数 +}} +``` + +""", + "brain_planner_prompt", + ) + + Prompt( + """ +{action_name} +动作描述:{action_description} +使用条件: +{action_require} +{{ + "action": "{action_name}",{action_parameters}, + "target_message_id":"触发action的消息id", + "reason":"触发action的原因" +}} +""", + "brain_action_prompt", + ) + + +class BrainPlanner: + def __init__(self, chat_id: str, action_manager: ActionManager): + self.chat_id = chat_id + self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]" + self.action_manager = action_manager + # LLM规划器配置 + self.planner_llm = LLMRequest( + model_set=model_config.model_task_config.planner, request_type="planner" + ) # 用于动作规划 + + self.last_obs_time_mark = 0.0 + + def find_message_by_id( + self, message_id: str, message_id_list: List[Tuple[str, "DatabaseMessages"]] + ) -> Optional["DatabaseMessages"]: + # sourcery skip: use-next + """ + 根据message_id从message_id_list中查找对应的原始消息 + + Args: + message_id: 要查找的消息ID + message_id_list: 消息ID列表,格式为[{'id': str, 'message': dict}, ...] + + Returns: + 找到的原始消息字典,如果未找到则返回None + """ + for item in message_id_list: + if item[0] == message_id: + return item[1] + return None + + def _parse_single_action( + self, + action_json: dict, + message_id_list: List[Tuple[str, "DatabaseMessages"]], + current_available_actions: List[Tuple[str, ActionInfo]], + ) -> List[ActionPlannerInfo]: + """解析单个action JSON并返回ActionPlannerInfo列表""" + action_planner_infos = [] + + try: + action = action_json.get("action", "no_action") + reasoning = action_json.get("reason", "未提供原因") + action_data = {key: value for key, value in action_json.items() if key not in ["action", "reason"]} + # 非no_action动作需要target_message_id + target_message = None + + if target_message_id := action_json.get("target_message_id"): + # 根据target_message_id查找原始消息 + target_message = self.find_message_by_id(target_message_id, message_id_list) + if target_message is None: + logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息") + # 选择最新消息作为target_message + target_message = message_id_list[-1][1] + else: + target_message = message_id_list[-1][1] + logger.debug(f"{self.log_prefix}动作'{action}'缺少target_message_id,使用最新消息作为target_message") + + # 验证action是否可用 + available_action_names = [action_name for action_name, _ in current_available_actions] + internal_action_names = ["no_reply", "reply", "wait_time"] + + if action not in internal_action_names and action not in available_action_names: + logger.warning( + f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {available_action_names}),将强制使用 'no_reply'" + ) + reasoning = ( + f"LLM 返回了当前不可用的动作 '{action}' (可用: {available_action_names})。原始理由: {reasoning}" + ) + action = "no_reply" + + # 创建ActionPlannerInfo对象 + # 将列表转换为字典格式 + available_actions_dict = dict(current_available_actions) + action_planner_infos.append( + ActionPlannerInfo( + action_type=action, + reasoning=reasoning, + action_data=action_data, + action_message=target_message, + available_actions=available_actions_dict, + ) + ) + + except Exception as e: + logger.error(f"{self.log_prefix}解析单个action时出错: {e}") + # 将列表转换为字典格式 + available_actions_dict = dict(current_available_actions) + action_planner_infos.append( + ActionPlannerInfo( + action_type="no_reply", + reasoning=f"解析单个action时出错: {e}", + action_data={}, + action_message=None, + available_actions=available_actions_dict, + ) + ) + + return action_planner_infos + + async def plan( + self, + available_actions: Dict[str, ActionInfo], + loop_start_time: float = 0.0, + ) -> Tuple[List[ActionPlannerInfo], Optional["DatabaseMessages"]]: + # sourcery skip: use-named-expression + """ + 规划器 (Planner): 使用LLM根据上下文决定做出什么动作。 + """ + target_message: Optional["DatabaseMessages"] = None + + # 获取聊天上下文 + message_list_before_now = get_raw_msg_before_timestamp_with_chat( + chat_id=self.chat_id, + timestamp=time.time(), + limit=int(global_config.chat.max_context_size * 0.6), + ) + message_id_list: list[Tuple[str, "DatabaseMessages"]] = [] + chat_content_block, message_id_list = build_readable_messages_with_id( + messages=message_list_before_now, + timestamp_mode="normal_no_YMD", + read_mark=self.last_obs_time_mark, + truncate=True, + show_actions=True, + ) + + message_list_before_now_short = message_list_before_now[-int(global_config.chat.max_context_size * 0.3) :] + chat_content_block_short, message_id_list_short = build_readable_messages_with_id( + messages=message_list_before_now_short, + timestamp_mode="normal_no_YMD", + truncate=False, + show_actions=False, + ) + + self.last_obs_time_mark = time.time() + + # 获取必要信息 + is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info() + + # 应用激活类型过滤 + filtered_actions = self._filter_actions_by_activation_type(available_actions, chat_content_block_short) + + logger.debug(f"{self.log_prefix}过滤后有{len(filtered_actions)}个可用动作") + + # 构建包含所有动作的提示词 + prompt, message_id_list = await self.build_planner_prompt( + is_group_chat=is_group_chat, + chat_target_info=chat_target_info, + current_available_actions=filtered_actions, + chat_content_block=chat_content_block, + message_id_list=message_id_list, + interest=global_config.personality.interest, + ) + + # 调用LLM获取决策 + actions = await self._execute_main_planner( + prompt=prompt, + message_id_list=message_id_list, + filtered_actions=filtered_actions, + available_actions=available_actions, + loop_start_time=loop_start_time, + ) + + # 获取target_message(如果有非no_action的动作) + non_no_actions = [a for a in actions if a.action_type != "no_reply"] + if non_no_actions: + target_message = non_no_actions[0].action_message + + return actions, target_message + + async def build_planner_prompt( + self, + is_group_chat: bool, + chat_target_info: Optional["TargetPersonInfo"], + current_available_actions: Dict[str, ActionInfo], + message_id_list: List[Tuple[str, "DatabaseMessages"]], + chat_content_block: str = "", + interest: str = "", + ) -> tuple[str, List[Tuple[str, "DatabaseMessages"]]]: + """构建 Planner LLM 的提示词 (获取模板并填充数据)""" + try: + # 获取最近执行过的动作 + actions_before_now = get_actions_by_timestamp_with_chat( + chat_id=self.chat_id, + timestamp_start=time.time() - 600, + timestamp_end=time.time(), + limit=6, + ) + actions_before_now_block = build_readable_actions(actions=actions_before_now) + if actions_before_now_block: + actions_before_now_block = f"你刚刚选择并执行过的action是:\n{actions_before_now_block}" + else: + actions_before_now_block = "" + + # 构建聊天上下文描述 + chat_context_description = f"你正在和 {chat_target_info.person_name or chat_target_info.user_nickname or '对方'} 聊天中" + + # 构建动作选项块 + action_options_block = await self._build_action_options_block(current_available_actions) + + # 其他信息 + moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。" + time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" + bot_name = global_config.bot.nickname + bot_nickname = ( + f",也可以叫你{','.join(global_config.bot.alias_names)}" if global_config.bot.alias_names else "" + ) + name_block = f"你的名字是{bot_name}{bot_nickname},请注意哪些是你自己的发言。" + + # 获取主规划器模板并填充 + planner_prompt_template = await global_prompt_manager.get_prompt_async("brain_planner_prompt") + prompt = planner_prompt_template.format( + time_block=time_block, + chat_context_description=chat_context_description, + chat_content_block=chat_content_block, + actions_before_now_block=actions_before_now_block, + action_options_text=action_options_block, + moderation_prompt=moderation_prompt_block, + name_block=name_block, + interest=interest, + plan_style=global_config.personality.plan_style, + ) + + return prompt, message_id_list + except Exception as e: + logger.error(f"构建 Planner 提示词时出错: {e}") + logger.error(traceback.format_exc()) + return "构建 Planner Prompt 时出错", [] + + def get_necessary_info(self) -> Tuple[bool, Optional["TargetPersonInfo"], Dict[str, ActionInfo]]: + """ + 获取 Planner 需要的必要信息 + """ + is_group_chat = True + is_group_chat, chat_target_info = get_chat_type_and_target_info(self.chat_id) + logger.debug(f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}") + + current_available_actions_dict = self.action_manager.get_using_actions() + + # 获取完整的动作信息 + all_registered_actions: Dict[str, ActionInfo] = component_registry.get_components_by_type( # type: ignore + ComponentType.ACTION + ) + current_available_actions = {} + for action_name in current_available_actions_dict: + if action_name in all_registered_actions: + current_available_actions[action_name] = all_registered_actions[action_name] + else: + logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到") + + return is_group_chat, chat_target_info, current_available_actions + + def _filter_actions_by_activation_type( + self, available_actions: Dict[str, ActionInfo], chat_content_block: str + ) -> Dict[str, ActionInfo]: + """根据激活类型过滤动作""" + filtered_actions = {} + + for action_name, action_info in available_actions.items(): + if action_info.activation_type == ActionActivationType.NEVER: + logger.debug(f"{self.log_prefix}动作 {action_name} 设置为 NEVER 激活类型,跳过") + continue + elif action_info.activation_type in [ActionActivationType.LLM_JUDGE, ActionActivationType.ALWAYS]: + filtered_actions[action_name] = action_info + elif action_info.activation_type == ActionActivationType.RANDOM: + if random.random() < action_info.random_activation_probability: + filtered_actions[action_name] = action_info + elif action_info.activation_type == ActionActivationType.KEYWORD: + if action_info.activation_keywords: + for keyword in action_info.activation_keywords: + if keyword in chat_content_block: + filtered_actions[action_name] = action_info + break + else: + logger.warning(f"{self.log_prefix}未知的激活类型: {action_info.activation_type},跳过处理") + + return filtered_actions + + async def _build_action_options_block(self, current_available_actions: Dict[str, ActionInfo]) -> str: + # sourcery skip: use-join + """构建动作选项块""" + if not current_available_actions: + return "" + + action_options_block = "" + for action_name, action_info in current_available_actions.items(): + # 构建参数文本 + param_text = "" + if action_info.action_parameters: + param_text = "\n" + for param_name, param_description in action_info.action_parameters.items(): + param_text += f' "{param_name}":"{param_description}"\n' + param_text = param_text.rstrip("\n") + + # 构建要求文本 + require_text = "" + for require_item in action_info.action_require: + require_text += f"- {require_item}\n" + require_text = require_text.rstrip("\n") + + # 获取动作提示模板并填充 + using_action_prompt = await global_prompt_manager.get_prompt_async("brain_action_prompt") + using_action_prompt = using_action_prompt.format( + action_name=action_name, + action_description=action_info.description, + action_parameters=param_text, + action_require=require_text, + ) + + action_options_block += using_action_prompt + + return action_options_block + + async def _execute_main_planner( + self, + prompt: str, + message_id_list: List[Tuple[str, "DatabaseMessages"]], + filtered_actions: Dict[str, ActionInfo], + available_actions: Dict[str, ActionInfo], + loop_start_time: float, + ) -> List[ActionPlannerInfo]: + """执行主规划器""" + llm_content = None + actions: List[ActionPlannerInfo] = [] + + try: + # 调用LLM + llm_content, (reasoning_content, _, _) = await self.planner_llm.generate_response_async(prompt=prompt) + + # logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}") + # logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}") + + if global_config.debug.show_prompt: + logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}") + logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}") + if reasoning_content: + logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") + else: + logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}") + logger.debug(f"{self.log_prefix}规划器原始响应: {llm_content}") + if reasoning_content: + logger.debug(f"{self.log_prefix}规划器推理: {reasoning_content}") + + except Exception as req_e: + logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}") + return [ + ActionPlannerInfo( + action_type="no_reply", + reasoning=f"LLM 请求失败,模型出现问题: {req_e}", + action_data={}, + action_message=None, + available_actions=available_actions, + ) + ] + + # 解析LLM响应 + if llm_content: + try: + if json_objects := self._extract_json_from_markdown(llm_content): + logger.debug(f"{self.log_prefix}从响应中提取到{len(json_objects)}个JSON对象") + filtered_actions_list = list(filtered_actions.items()) + for json_obj in json_objects: + actions.extend(self._parse_single_action(json_obj, message_id_list, filtered_actions_list)) + else: + # 尝试解析为直接的JSON + logger.warning(f"{self.log_prefix}LLM没有返回可用动作: {llm_content}") + actions = self._create_no_reply("LLM没有返回可用动作", available_actions) + + except Exception as json_e: + logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'") + actions = self._create_no_reply(f"解析LLM响应JSON失败: {json_e}", available_actions) + traceback.print_exc() + else: + actions = self._create_no_reply("规划器没有获得LLM响应", available_actions) + + # 添加循环开始时间到所有非no_action动作 + for action in actions: + action.action_data = action.action_data or {} + action.action_data["loop_start_time"] = loop_start_time + + logger.info( + f"{self.log_prefix}规划器决定执行{len(actions)}个动作: {' '.join([a.action_type for a in actions])}" + ) + + return actions + + def _create_no_reply(self, reasoning: str, available_actions: Dict[str, ActionInfo]) -> List[ActionPlannerInfo]: + """创建no_action""" + return [ + ActionPlannerInfo( + action_type="no_reply", + reasoning=reasoning, + action_data={}, + action_message=None, + available_actions=available_actions, + ) + ] + + def _extract_json_from_markdown(self, content: str) -> List[dict]: + # sourcery skip: for-append-to-extend + """从Markdown格式的内容中提取JSON对象""" + json_objects = [] + + # 使用正则表达式查找```json包裹的JSON内容 + json_pattern = r"```json\s*(.*?)\s*```" + matches = re.findall(json_pattern, content, re.DOTALL) + + for match in matches: + try: + # 清理可能的注释和格式问题 + json_str = re.sub(r"//.*?\n", "\n", match) # 移除单行注释 + json_str = re.sub(r"/\*.*?\*/", "", json_str, flags=re.DOTALL) # 移除多行注释 + if json_str := json_str.strip(): + json_obj = json.loads(repair_json(json_str)) + if isinstance(json_obj, dict): + json_objects.append(json_obj) + elif isinstance(json_obj, list): + for item in json_obj: + if isinstance(item, dict): + json_objects.append(item) + except Exception as e: + logger.warning(f"解析JSON块失败: {e}, 块内容: {match[:100]}...") + continue + + return json_objects + + +init_prompt() diff --git a/src/chat/express/expression_selector.py b/src/chat/express/expression_selector.py index 9af7a30d..557ffd11 100644 --- a/src/chat/express/expression_selector.py +++ b/src/chat/express/expression_selector.py @@ -219,7 +219,7 @@ class ExpressionSelector: return [], [] # 1. 获取20个随机表达方式(现在按权重抽取) - style_exprs = self.get_random_expressions(chat_id, 10) + style_exprs = self.get_random_expressions(chat_id, 20) if len(style_exprs) < 10: logger.info(f"聊天流 {chat_id} 表达方式正在积累中") diff --git a/src/chat/heart_flow/heartflow.py b/src/chat/heart_flow/heartflow.py index 6f2c8459..646acd2d 100644 --- a/src/chat/heart_flow/heartflow.py +++ b/src/chat/heart_flow/heartflow.py @@ -4,7 +4,7 @@ from typing import Any, Optional, Dict from src.chat.message_receive.chat_stream import get_chat_manager from src.common.logger import get_logger from src.chat.heart_flow.heartFC_chat import HeartFChatting -from src.chat.heart_flow.brain_chat import BrainChatting +from src.chat.brain_chat.brain_chat import BrainChatting from src.chat.message_receive.chat_stream import ChatStream logger = get_logger("heartflow") diff --git a/src/chat/heart_flow/heartflow_message_processor.py b/src/chat/heart_flow/heartflow_message_processor.py index ce4d033f..f03e3207 100644 --- a/src/chat/heart_flow/heartflow_message_processor.py +++ b/src/chat/heart_flow/heartflow_message_processor.py @@ -106,6 +106,8 @@ class HeartFCMessageReceiver: message.message_info.platform, # type: ignore replace_bot_name=True, ) + if not processed_plain_text: + print(message) logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}") # type: ignore diff --git a/src/chat/planner_actions/planner.py b/src/chat/planner_actions/planner.py index e7e20735..97575144 100644 --- a/src/chat/planner_actions/planner.py +++ b/src/chat/planner_actions/planner.py @@ -317,9 +317,6 @@ class ActionPlanner: # 构建聊天上下文描述 chat_context_description = "你现在正在一个群聊中" - if not is_group_chat and chat_target_info: - chat_target_name = chat_target_info.person_name or chat_target_info.user_nickname or "对方" - chat_context_description = f"你正在和 {chat_target_name} 私聊" # 构建动作选项块 action_options_block = await self._build_action_options_block(current_available_actions)