diff --git a/changelogs/changelog.md b/changelogs/changelog.md index 5679a228..5f90b31f 100644 --- a/changelogs/changelog.md +++ b/changelogs/changelog.md @@ -2,6 +2,7 @@ ## [0.10.1] - 2025-8- +- 为planner添加单独控制的提示词 - 修复激活值计算异常的BUG - 修复lpmm日志错误 - 修复首句不回复的问题 diff --git a/scripts/log_viewer_optimized.py b/scripts/log_viewer_optimized.py index d93f5016..b11db1ba 100644 --- a/scripts/log_viewer_optimized.py +++ b/scripts/log_viewer_optimized.py @@ -110,7 +110,6 @@ class LogFormatter: "plugin_system": "#FF0080", "experimental": "#FFFFFF", "person_info": "#008000", - "individuality": "#000080", "manager": "#800080", "llm_models": "#008080", "plugins": "#800000", diff --git a/src/chat/replyer/default_generator.py b/src/chat/replyer/default_generator.py index c14b3696..59340914 100644 --- a/src/chat/replyer/default_generator.py +++ b/src/chat/replyer/default_generator.py @@ -11,7 +11,6 @@ from src.common.logger import get_logger from src.common.data_models.database_data_model import DatabaseMessages from src.common.data_models.info_data_model import ActionPlannerInfo from src.config.config import global_config, model_config -from src.individuality.individuality import get_individuality from src.llm_models.utils_model import LLMRequest from src.chat.message_receive.message import UserInfo, Seg, MessageRecv, MessageSending from src.chat.message_receive.chat_stream import ChatStream @@ -669,6 +668,16 @@ class DefaultReplyer: action_descriptions += chosen_action_descriptions return action_descriptions + + async def build_personality_prompt(self) -> str: + bot_name = global_config.bot.nickname + if global_config.bot.alias_names: + bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" + else: + bot_nickname = "" + + prompt_personality = f"{global_config.personality.personality_core};{global_config.personality.personality_side}" + return f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}" async def build_prompt_reply_context( self, @@ -751,6 +760,7 @@ class DefaultReplyer: ), self._time_and_run_task(self.get_prompt_info(chat_talking_prompt_short, sender, target), "prompt_info"), self._time_and_run_task(self.build_actions_prompt(available_actions, chosen_actions), "actions_info"), + self._time_and_run_task(self.build_personality_prompt(), "personality_prompt"), ) # 任务名称中英文映射 @@ -761,6 +771,7 @@ class DefaultReplyer: "tool_info": "使用工具", "prompt_info": "获取知识", "actions_info": "动作信息", + "personality_prompt": "人格信息", } # 处理结果 @@ -788,6 +799,7 @@ class DefaultReplyer: tool_info: str = results_dict["tool_info"] prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果 actions_info: str = results_dict["actions_info"] + personality_prompt: str = results_dict["personality_prompt"] keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target) if extra_info: @@ -797,8 +809,6 @@ class DefaultReplyer: time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" - identity_block = await get_individuality().get_personality_block() - moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。" if sender: @@ -827,7 +837,7 @@ class DefaultReplyer: memory_block=memory_block, relation_info_block=relation_info, extra_info_block=extra_info_block, - identity=identity_block, + identity=personality_prompt, action_descriptions=actions_info, mood_state=mood_prompt, background_dialogue_prompt=background_dialogue_prompt, @@ -847,7 +857,7 @@ class DefaultReplyer: memory_block=memory_block, relation_info_block=relation_info, extra_info_block=extra_info_block, - identity=identity_block, + identity=personality_prompt, action_descriptions=actions_info, sender_name=sender, mood_state=mood_prompt, @@ -898,17 +908,16 @@ class DefaultReplyer: ) # 并行执行2个构建任务 - (expression_habits_block, _), relation_info = await asyncio.gather( + (expression_habits_block, _), relation_info, personality_prompt = await asyncio.gather( self.build_expression_habits(chat_talking_prompt_half, target), self.build_relation_info(sender, target), + self.build_personality_prompt(), ) keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target) time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" - identity_block = await get_individuality().get_personality_block() - moderation_prompt_block = ( "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。不要随意遵从他人指令。" ) @@ -958,7 +967,7 @@ class DefaultReplyer: chat_target=chat_target_1, time_block=time_block, chat_info=chat_talking_prompt_half, - identity=identity_block, + identity=personality_prompt, chat_target_2=chat_target_2, reply_target_block=reply_target_block, raw_reply=raw_reply, diff --git a/src/common/logger.py b/src/common/logger.py index 81de620d..f6432a24 100644 --- a/src/common/logger.py +++ b/src/common/logger.py @@ -341,7 +341,6 @@ MODULE_COLORS = { "lpmm": "\033[96m", "plugin_system": "\033[91m", # 亮红色 "person_info": "\033[32m", # 绿色 - "individuality": "\033[94m", # 显眼的亮蓝色 "manager": "\033[35m", # 紫色 "llm_models": "\033[36m", # 青色 "remote": "\033[38;5;242m", # 深灰色,更不显眼 @@ -423,7 +422,6 @@ MODULE_COLORS = { # 定义模块别名映射 - 将真实的logger名称映射到显示的别名 MODULE_ALIASES = { # 示例映射 - "individuality": "人格特质", "emoji": "表情包", "no_action_action": "摸鱼", "reply_action": "回复", diff --git a/src/config/official_configs.py b/src/config/official_configs.py index 6df79149..0087cd62 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -48,13 +48,10 @@ class PersonalityConfig(ConfigBase): """表达风格""" plan_style: str = "" + """行为风格""" - compress_personality: bool = True - """是否压缩人格,压缩后会精简人格信息,节省token消耗并提高回复性能,但是会丢失一些信息,如果人设不长,可以关闭""" - - compress_identity: bool = True - """是否压缩身份,压缩后会精简身份信息,节省token消耗并提高回复性能,但是会丢失一些信息,如果不长,可以关闭""" - + interest: str = "" + """兴趣""" @dataclass class RelationshipConfig(ConfigBase): diff --git a/src/individuality/individuality.py b/src/individuality/individuality.py deleted file mode 100644 index f63c88c5..00000000 --- a/src/individuality/individuality.py +++ /dev/null @@ -1,304 +0,0 @@ -import json -import os -import hashlib -import time - -from src.common.logger import get_logger -from src.config.config import global_config, model_config -from src.llm_models.utils_model import LLMRequest -from rich.traceback import install - -install(extra_lines=3) - -logger = get_logger("individuality") - - -class Individuality: - """个体特征管理类""" - - def __init__(self): - self.name = "" - self.meta_info_file_path = "data/personality/meta.json" - self.personality_data_file_path = "data/personality/personality_data.json" - - self.model = LLMRequest(model_set=model_config.model_task_config.utils, request_type="individuality.compress") - - async def initialize(self) -> None: - """初始化个体特征""" - bot_nickname = global_config.bot.nickname - personality_core = global_config.personality.personality_core - personality_side = global_config.personality.personality_side - identity = global_config.personality.identity - - self.name = bot_nickname - - # 检查配置变化,如果变化则清空 - personality_changed, identity_changed = await self._check_config_and_clear_if_changed( - bot_nickname, personality_core, personality_side, identity - ) - - logger.info("正在构建人设信息") - - # 如果配置有变化,重新生成压缩版本 - if personality_changed or identity_changed: - logger.info("检测到配置变化,重新生成压缩版本") - personality_result = await self._create_personality(personality_core, personality_side) - identity_result = await self._create_identity(identity) - else: - logger.info("配置未变化,使用缓存版本") - # 从文件中获取已有的结果 - personality_result, identity_result = self._get_personality_from_file() - if not personality_result or not identity_result: - logger.info("未找到有效缓存,重新生成") - personality_result = await self._create_personality(personality_core, personality_side) - identity_result = await self._create_identity(identity) - - # 保存到文件 - if personality_result and identity_result: - self._save_personality_to_file(personality_result, identity_result) - logger.info("已将人设构建并保存到文件") - else: - logger.error("人设构建失败") - - - async def get_personality_block(self) -> str: - bot_name = global_config.bot.nickname - if global_config.bot.alias_names: - bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" - else: - bot_nickname = "" - - # 从文件获取 short_impression - personality, identity = self._get_personality_from_file() - - # 确保short_impression是列表格式且有足够的元素 - if not personality or not identity: - logger.warning(f"personality或identity为空: {personality}, {identity}, 使用默认值") - personality = "友好活泼" - identity = "人类" - - prompt_personality = f"{personality}\n{identity}" - return f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}" - - def _get_config_hash( - self, bot_nickname: str, personality_core: str, personality_side: str, identity: str - ) -> tuple[str, str]: - """获取personality和identity配置的哈希值 - - Returns: - tuple: (personality_hash, identity_hash) - """ - # 人格配置哈希 - personality_config = { - "nickname": bot_nickname, - "personality_core": personality_core, - "personality_side": personality_side, - "compress_personality": global_config.personality.compress_personality, - } - personality_str = json.dumps(personality_config, sort_keys=True) - personality_hash = hashlib.md5(personality_str.encode("utf-8")).hexdigest() - - # 身份配置哈希 - identity_config = { - "identity": identity, - "compress_identity": global_config.personality.compress_identity, - } - identity_str = json.dumps(identity_config, sort_keys=True) - identity_hash = hashlib.md5(identity_str.encode("utf-8")).hexdigest() - - return personality_hash, identity_hash - - async def _check_config_and_clear_if_changed( - self, bot_nickname: str, personality_core: str, personality_side: str, identity: str - ) -> tuple[bool, bool]: - """检查配置是否发生变化,如果变化则清空相应缓存 - - Returns: - tuple: (personality_changed, identity_changed) - """ - current_personality_hash, current_identity_hash = self._get_config_hash( - bot_nickname, personality_core, personality_side, identity - ) - - meta_info = self._load_meta_info() - stored_personality_hash = meta_info.get("personality_hash") - stored_identity_hash = meta_info.get("identity_hash") - - personality_changed = current_personality_hash != stored_personality_hash - identity_changed = current_identity_hash != stored_identity_hash - - if personality_changed: - logger.info("检测到人格配置发生变化") - - if identity_changed: - logger.info("检测到身份配置发生变化") - - # 更新元信息文件 - new_meta_info = { - "personality_hash": current_personality_hash, - "identity_hash": current_identity_hash, - } - self._save_meta_info(new_meta_info) - - return personality_changed, identity_changed - - def _load_meta_info(self) -> dict: - """从JSON文件中加载元信息""" - if os.path.exists(self.meta_info_file_path): - try: - with open(self.meta_info_file_path, "r", encoding="utf-8") as f: - return json.load(f) - except (json.JSONDecodeError, IOError) as e: - logger.error(f"读取meta_info文件失败: {e}, 将创建新文件。") - return {} - return {} - - def _save_meta_info(self, meta_info: dict): - """将元信息保存到JSON文件""" - try: - os.makedirs(os.path.dirname(self.meta_info_file_path), exist_ok=True) - with open(self.meta_info_file_path, "w", encoding="utf-8") as f: - json.dump(meta_info, f, ensure_ascii=False, indent=2) - except IOError as e: - logger.error(f"保存meta_info文件失败: {e}") - - def _load_personality_data(self) -> dict: - """从JSON文件中加载personality数据""" - if os.path.exists(self.personality_data_file_path): - try: - with open(self.personality_data_file_path, "r", encoding="utf-8") as f: - return json.load(f) - except (json.JSONDecodeError, IOError) as e: - logger.error(f"读取personality_data文件失败: {e}, 将创建新文件。") - return {} - return {} - - def _save_personality_data(self, personality_data: dict): - """将personality数据保存到JSON文件""" - try: - os.makedirs(os.path.dirname(self.personality_data_file_path), exist_ok=True) - with open(self.personality_data_file_path, "w", encoding="utf-8") as f: - json.dump(personality_data, f, ensure_ascii=False, indent=2) - logger.debug(f"已保存personality数据到文件: {self.personality_data_file_path}") - except IOError as e: - logger.error(f"保存personality_data文件失败: {e}") - - def _get_personality_from_file(self) -> tuple[str, str]: - """从文件获取personality数据 - - Returns: - tuple: (personality, identity) - """ - personality_data = self._load_personality_data() - personality = personality_data.get("personality", "友好活泼") - identity = personality_data.get("identity", "人类") - return personality, identity - - def _save_personality_to_file(self, personality: str, identity: str): - """保存personality数据到文件 - - Args: - personality: 压缩后的人格描述 - identity: 压缩后的身份描述 - """ - personality_data = { - "personality": personality, - "identity": identity, - "bot_nickname": self.name, - "last_updated": int(time.time()), - } - self._save_personality_data(personality_data) - - async def _create_personality(self, personality_core: str, personality_side: str) -> str: - # sourcery skip: merge-list-append, move-assign - """使用LLM创建压缩版本的impression - - Args: - personality_core: 核心人格 - personality_side: 人格侧面列表 - - Returns: - str: 压缩后的impression文本 - """ - logger.info("正在构建人格.........") - - # 核心人格保持不变 - personality_parts = [] - if personality_core: - personality_parts.append(f"{personality_core}") - - # 准备需要压缩的内容 - if global_config.personality.compress_personality: - personality_to_compress = f"人格特质: {personality_side}" - - prompt = f"""请将以下人格信息进行简洁压缩,保留主要内容,用简练的中文表达: -{personality_to_compress} - -要求: -1. 保持原意不变,尽量使用原文 -2. 尽量简洁,不超过30字 -3. 直接输出压缩后的内容,不要解释""" - - response, _ = await self.model.generate_response_async( - prompt=prompt, - ) - - if response and response.strip(): - personality_parts.append(response.strip()) - logger.info(f"精简人格侧面: {response.strip()}") - else: - logger.error(f"使用LLM压缩人设时出错: {response}") - # 压缩失败时使用原始内容 - if personality_side: - personality_parts.append(personality_side) - - if personality_parts: - personality_result = "。".join(personality_parts) - else: - personality_result = personality_core or "友好活泼" - else: - personality_result = personality_core - if personality_side: - personality_result += f",{personality_side}" - - return personality_result - - async def _create_identity(self, identity: str) -> str: - """使用LLM创建压缩版本的impression""" - logger.info("正在构建身份.........") - - if global_config.personality.compress_identity: - identity_to_compress = f"身份背景: {identity}" - - prompt = f"""请将以下身份信息进行简洁压缩,保留主要内容,用简练的中文表达: -{identity_to_compress} - -要求: -1. 保持原意不变,尽量使用原文 -2. 尽量简洁,不超过30字 -3. 直接输出压缩后的内容,不要解释""" - - response, _ = await self.model.generate_response_async( - prompt=prompt, - ) - - if response and response.strip(): - identity_result = response.strip() - logger.info(f"精简身份: {identity_result}") - else: - logger.error(f"使用LLM压缩身份时出错: {response}") - identity_result = identity - else: - identity_result = identity - - return identity_result - - -individuality = None - - -def get_individuality(): - global individuality - if individuality is None: - individuality = Individuality() - return individuality diff --git a/src/individuality/not_using/offline_llm.py b/src/individuality/not_using/offline_llm.py deleted file mode 100644 index 2bafb69a..00000000 --- a/src/individuality/not_using/offline_llm.py +++ /dev/null @@ -1,127 +0,0 @@ -import asyncio -import os -import time -from typing import Tuple, Union - -import aiohttp -import requests -from src.common.logger import get_logger -from src.common.tcp_connector import get_tcp_connector -from rich.traceback import install - -install(extra_lines=3) - -logger = get_logger("offline_llm") - - -class LLMRequestOff: - def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-V3", **kwargs): - self.model_name = model_name - self.params = kwargs - self.api_key = os.getenv("SILICONFLOW_KEY") - self.base_url = os.getenv("SILICONFLOW_BASE_URL") - - if not self.api_key or not self.base_url: - raise ValueError("环境变量未正确加载:SILICONFLOW_KEY 或 SILICONFLOW_BASE_URL 未设置") - - # logger.info(f"API URL: {self.base_url}") # 使用 logger 记录 base_url - - def generate_response(self, prompt: str) -> Union[str, Tuple[str, str]]: - """根据输入的提示生成模型的响应""" - headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"} - - # 构建请求体 - data = { - "model": self.model_name, - "messages": [{"role": "user", "content": prompt}], - "temperature": 0.4, - **self.params, - } - - # 发送请求到完整的 chat/completions 端点 - api_url = f"{self.base_url.rstrip('/')}/chat/completions" # type: ignore - logger.info(f"Request URL: {api_url}") # 记录请求的 URL - - max_retries = 3 - base_wait_time = 15 # 基础等待时间(秒) - - for retry in range(max_retries): - try: - response = requests.post(api_url, headers=headers, json=data) - - if response.status_code == 429: - wait_time = base_wait_time * (2**retry) # 指数退避 - logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") - time.sleep(wait_time) - continue - - response.raise_for_status() # 检查其他响应状态 - - result = response.json() - if "choices" in result and len(result["choices"]) > 0: - content = result["choices"][0]["message"]["content"] - reasoning_content = result["choices"][0]["message"].get("reasoning_content", "") - return content, reasoning_content - return "没有返回结果", "" - - except Exception as e: - if retry < max_retries - 1: # 如果还有重试机会 - wait_time = base_wait_time * (2**retry) - logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}") - time.sleep(wait_time) - else: - logger.error(f"请求失败: {str(e)}") - return f"请求失败: {str(e)}", "" - - logger.error("达到最大重试次数,请求仍然失败") - return "达到最大重试次数,请求仍然失败", "" - - async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]: - """异步方式根据输入的提示生成模型的响应""" - headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"} - - # 构建请求体 - data = { - "model": self.model_name, - "messages": [{"role": "user", "content": prompt}], - "temperature": 0.5, - **self.params, - } - - # 发送请求到完整的 chat/completions 端点 - api_url = f"{self.base_url.rstrip('/')}/chat/completions" # type: ignore - logger.info(f"Request URL: {api_url}") # 记录请求的 URL - - max_retries = 3 - base_wait_time = 15 - - async with aiohttp.ClientSession(connector=await get_tcp_connector()) as session: - for retry in range(max_retries): - try: - async with session.post(api_url, headers=headers, json=data) as response: - if response.status == 429: - wait_time = base_wait_time * (2**retry) # 指数退避 - logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") - await asyncio.sleep(wait_time) - continue - - response.raise_for_status() # 检查其他响应状态 - - result = await response.json() - if "choices" in result and len(result["choices"]) > 0: - content = result["choices"][0]["message"]["content"] - reasoning_content = result["choices"][0]["message"].get("reasoning_content", "") - return content, reasoning_content - return "没有返回结果", "" - - except Exception as e: - if retry < max_retries - 1: # 如果还有重试机会 - wait_time = base_wait_time * (2**retry) - logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}") - await asyncio.sleep(wait_time) - else: - logger.error(f"请求失败: {str(e)}") - return f"请求失败: {str(e)}", "" - - logger.error("达到最大重试次数,请求仍然失败") - return "达到最大重试次数,请求仍然失败", "" diff --git a/src/individuality/not_using/per_bf_gen.py b/src/individuality/not_using/per_bf_gen.py deleted file mode 100644 index aedbe00e..00000000 --- a/src/individuality/not_using/per_bf_gen.py +++ /dev/null @@ -1,310 +0,0 @@ -from typing import Dict, List -import json -import os -from dotenv import load_dotenv -import sys -import toml -import random -from tqdm import tqdm - -# 添加项目根目录到 Python 路径 -root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")) -sys.path.append(root_path) - -# 加载配置文件 -config_path = os.path.join(root_path, "config", "bot_config.toml") -with open(config_path, "r", encoding="utf-8") as f: - config = toml.load(f) - -# 现在可以导入src模块 -from individuality.not_using.scene import get_scene_by_factor, PERSONALITY_SCENES # noqa E402 -from individuality.not_using.questionnaire import FACTOR_DESCRIPTIONS # noqa E402 -from individuality.not_using.offline_llm import LLMRequestOff # noqa E402 - -# 加载环境变量 -env_path = os.path.join(root_path, ".env") -if os.path.exists(env_path): - print(f"从 {env_path} 加载环境变量") - load_dotenv(env_path) -else: - print(f"未找到环境变量文件: {env_path}") - print("将使用默认配置") - - -def adapt_scene(scene: str) -> str: - personality_core = config["personality"]["personality_core"] - personality_side = config["personality"]["personality_side"] - personality_side = random.choice(personality_side) - identitys = config["identity"]["identity"] - identity = random.choice(identitys) - - """ - 根据config中的属性,改编场景使其更适合当前角色 - - Args: - scene: 原始场景描述 - - Returns: - str: 改编后的场景描述 - """ - try: - prompt = f""" -这是一个参与人格测评的角色形象: -- 昵称: {config["bot"]["nickname"]} -- 性别: {config["identity"]["gender"]} -- 年龄: {config["identity"]["age"]}岁 -- 外貌: {config["identity"]["appearance"]} -- 性格核心: {personality_core} -- 性格侧面: {personality_side} -- 身份细节: {identity} - -请根据上述形象,改编以下场景,在测评中,用户将根据该场景给出上述角色形象的反应: -{scene} -保持场景的本质不变,但最好贴近生活且具体,并且让它更适合这个角色。 -改编后的场景应该自然、连贯,并考虑角色的年龄、身份和性格特点。只返回改编后的场景描述,不要包含其他说明。注意{config["bot"]["nickname"]}是面对这个场景的人,而不是场景的其他人。场景中不会有其描述, -现在,请你给出改编后的场景描述 -""" - - llm = LLMRequestOff(model_name=config["model"]["llm_normal"]["name"]) - adapted_scene, _ = llm.generate_response(prompt) - - # 检查返回的场景是否为空或错误信息 - if not adapted_scene or "错误" in adapted_scene or "失败" in adapted_scene: - print("场景改编失败,将使用原始场景") - return scene - - return adapted_scene - except Exception as e: - print(f"场景改编过程出错:{str(e)},将使用原始场景") - return scene - - -class PersonalityEvaluatorDirect: - def __init__(self): - self.personality_traits = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0} - self.scenarios = [] - self.final_scores: Dict[str, float] = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0} - self.dimension_counts = {trait: 0 for trait in self.final_scores} - - # 为每个人格特质获取对应的场景 - for trait in PERSONALITY_SCENES: - scenes = get_scene_by_factor(trait) - if not scenes: - continue - - # 从每个维度选择3个场景 - import random - - scene_keys = list(scenes.keys()) - selected_scenes = random.sample(scene_keys, min(3, len(scene_keys))) - - for scene_key in selected_scenes: - scene = scenes[scene_key] - - # 为每个场景添加评估维度 - # 主维度是当前特质,次维度随机选择一个其他特质 - other_traits = [t for t in PERSONALITY_SCENES if t != trait] - secondary_trait = random.choice(other_traits) - - self.scenarios.append( - {"场景": scene["scenario"], "评估维度": [trait, secondary_trait], "场景编号": scene_key} - ) - - self.llm = LLMRequestOff() - - def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]: - """ - 使用 DeepSeek AI 评估用户对特定场景的反应 - """ - # 构建维度描述 - dimension_descriptions = [] - for dim in dimensions: - if desc := FACTOR_DESCRIPTIONS.get(dim, ""): - dimension_descriptions.append(f"- {dim}:{desc}") - - dimensions_text = "\n".join(dimension_descriptions) - - prompt = f"""请根据以下场景和用户描述,评估用户在大五人格模型中的相关维度得分(1-6分)。 - -场景描述: -{scenario} - -用户回应: -{response} - -需要评估的维度说明: -{dimensions_text} - -请按照以下格式输出评估结果(仅输出JSON格式): -{{ - "{dimensions[0]}": 分数, - "{dimensions[1]}": 分数 -}} - -评分标准: -1 = 非常不符合该维度特征 -2 = 比较不符合该维度特征 -3 = 有点不符合该维度特征 -4 = 有点符合该维度特征 -5 = 比较符合该维度特征 -6 = 非常符合该维度特征 - -请根据用户的回应,结合场景和维度说明进行评分。确保分数在1-6之间,并给出合理的评估。""" - - try: - ai_response, _ = self.llm.generate_response(prompt) - # 尝试从AI响应中提取JSON部分 - start_idx = ai_response.find("{") - end_idx = ai_response.rfind("}") + 1 - if start_idx != -1 and end_idx != 0: - json_str = ai_response[start_idx:end_idx] - scores = json.loads(json_str) - # 确保所有分数在1-6之间 - return {k: max(1, min(6, float(v))) for k, v in scores.items()} - else: - print("AI响应格式不正确,使用默认评分") - return {dim: 3.5 for dim in dimensions} - except Exception as e: - print(f"评估过程出错:{str(e)}") - return {dim: 3.5 for dim in dimensions} - - def run_evaluation(self): - """ - 运行整个评估过程 - """ - print(f"欢迎使用{config['bot']['nickname']}形象创建程序!") - print("接下来,将给您呈现一系列有关您bot的场景(共15个)。") - print("请想象您的bot在以下场景下会做什么,并描述您的bot的反应。") - print("每个场景都会进行不同方面的评估。") - print("\n角色基本信息:") - print(f"- 昵称:{config['bot']['nickname']}") - print(f"- 性格核心:{config['personality']['personality_core']}") - print(f"- 性格侧面:{config['personality']['personality_side']}") - print(f"- 身份细节:{config['identity']['identity']}") - print("\n准备好了吗?按回车键开始...") - input() - - total_scenarios = len(self.scenarios) - progress_bar = tqdm( - total=total_scenarios, - desc="场景进度", - ncols=100, - bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]", - ) - - for _i, scenario_data in enumerate(self.scenarios, 1): - # print(f"\n{'-' * 20} 场景 {i}/{total_scenarios} - {scenario_data['场景编号']} {'-' * 20}") - - # 改编场景,使其更适合当前角色 - print(f"{config['bot']['nickname']}祈祷中...") - adapted_scene = adapt_scene(scenario_data["场景"]) - scenario_data["改编场景"] = adapted_scene - - print(adapted_scene) - print(f"\n请描述{config['bot']['nickname']}在这种情况下会如何反应:") - response = input().strip() - - if not response: - print("反应描述不能为空!") - continue - - print("\n正在评估您的描述...") - scores = self.evaluate_response(adapted_scene, response, scenario_data["评估维度"]) - - # 更新最终分数 - for dimension, score in scores.items(): - self.final_scores[dimension] += score - self.dimension_counts[dimension] += 1 - - print("\n当前评估结果:") - print("-" * 30) - for dimension, score in scores.items(): - print(f"{dimension}: {score}/6") - - # 更新进度条 - progress_bar.update(1) - - # if i < total_scenarios: - # print("\n按回车键继续下一个场景...") - # input() - - progress_bar.close() - - # 计算平均分 - for dimension in self.final_scores: - if self.dimension_counts[dimension] > 0: - self.final_scores[dimension] = round(self.final_scores[dimension] / self.dimension_counts[dimension], 2) - - print("\n" + "=" * 50) - print(f" {config['bot']['nickname']}的人格特征评估结果 ".center(50)) - print("=" * 50) - for trait, score in self.final_scores.items(): - print(f"{trait}: {score}/6".ljust(20) + f"测试场景数:{self.dimension_counts[trait]}".rjust(30)) - print("=" * 50) - - # 返回评估结果 - return self.get_result() - - def get_result(self): - """ - 获取评估结果 - """ - return { - "final_scores": self.final_scores, - "dimension_counts": self.dimension_counts, - "scenarios": self.scenarios, - "bot_info": { - "nickname": config["bot"]["nickname"], - "gender": config["identity"]["gender"], - "age": config["identity"]["age"], - "height": config["identity"]["height"], - "weight": config["identity"]["weight"], - "appearance": config["identity"]["appearance"], - "personality_core": config["personality"]["personality_core"], - "personality_side": config["personality"]["personality_side"], - "identity": config["identity"]["identity"], - }, - } - - -def main(): - evaluator = PersonalityEvaluatorDirect() - result = evaluator.run_evaluation() - - # 准备简化的结果数据 - simplified_result = { - "openness": round(result["final_scores"]["开放性"] / 6, 1), # 转换为0-1范围 - "conscientiousness": round(result["final_scores"]["严谨性"] / 6, 1), - "extraversion": round(result["final_scores"]["外向性"] / 6, 1), - "agreeableness": round(result["final_scores"]["宜人性"] / 6, 1), - "neuroticism": round(result["final_scores"]["神经质"] / 6, 1), - "bot_nickname": config["bot"]["nickname"], - } - - # 确保目录存在 - save_dir = os.path.join(root_path, "data", "personality") - os.makedirs(save_dir, exist_ok=True) - - # 创建文件名,替换可能的非法字符 - bot_name = config["bot"]["nickname"] - # 替换Windows文件名中不允许的字符 - for char in ["\\", "/", ":", "*", "?", '"', "<", ">", "|"]: - bot_name = bot_name.replace(char, "_") - - file_name = f"{bot_name}_personality.per" - save_path = os.path.join(save_dir, file_name) - - # 保存简化的结果 - with open(save_path, "w", encoding="utf-8") as f: - json.dump(simplified_result, f, ensure_ascii=False, indent=4) - - print(f"\n结果已保存到 {save_path}") - - # 同时保存完整结果到results目录 - os.makedirs("results", exist_ok=True) - with open("results/personality_result.json", "w", encoding="utf-8") as f: - json.dump(result, f, ensure_ascii=False, indent=2) - - -if __name__ == "__main__": - main() diff --git a/src/individuality/not_using/questionnaire.py b/src/individuality/not_using/questionnaire.py deleted file mode 100644 index 8e965061..00000000 --- a/src/individuality/not_using/questionnaire.py +++ /dev/null @@ -1,142 +0,0 @@ -# 人格测试问卷题目 -# 王孟成, 戴晓阳, & 姚树桥. (2011). -# 中国大五人格问卷的初步编制Ⅲ:简式版的制定及信效度检验. 中国临床心理学杂志, 19(04), Article 04. - -# 王孟成, 戴晓阳, & 姚树桥. (2010). -# 中国大五人格问卷的初步编制Ⅰ:理论框架与信度分析. 中国临床心理学杂志, 18(05), Article 05. - -PERSONALITY_QUESTIONS = [ - # 神经质维度 (F1) - {"id": 1, "content": "我常担心有什么不好的事情要发生", "factor": "神经质", "reverse_scoring": False}, - {"id": 2, "content": "我常感到害怕", "factor": "神经质", "reverse_scoring": False}, - {"id": 3, "content": "有时我觉得自己一无是处", "factor": "神经质", "reverse_scoring": False}, - {"id": 4, "content": "我很少感到忧郁或沮丧", "factor": "神经质", "reverse_scoring": True}, - {"id": 5, "content": "别人一句漫不经心的话,我常会联系在自己身上", "factor": "神经质", "reverse_scoring": False}, - {"id": 6, "content": "在面对压力时,我有种快要崩溃的感觉", "factor": "神经质", "reverse_scoring": False}, - {"id": 7, "content": "我常担忧一些无关紧要的事情", "factor": "神经质", "reverse_scoring": False}, - {"id": 8, "content": "我常常感到内心不踏实", "factor": "神经质", "reverse_scoring": False}, - # 严谨性维度 (F2) - {"id": 9, "content": "在工作上,我常只求能应付过去便可", "factor": "严谨性", "reverse_scoring": True}, - {"id": 10, "content": "一旦确定了目标,我会坚持努力地实现它", "factor": "严谨性", "reverse_scoring": False}, - {"id": 11, "content": "我常常是仔细考虑之后才做出决定", "factor": "严谨性", "reverse_scoring": False}, - {"id": 12, "content": "别人认为我是个慎重的人", "factor": "严谨性", "reverse_scoring": False}, - {"id": 13, "content": "做事讲究逻辑和条理是我的一个特点", "factor": "严谨性", "reverse_scoring": False}, - {"id": 14, "content": "我喜欢一开头就把事情计划好", "factor": "严谨性", "reverse_scoring": False}, - {"id": 15, "content": "我工作或学习很勤奋", "factor": "严谨性", "reverse_scoring": False}, - {"id": 16, "content": "我是个倾尽全力做事的人", "factor": "严谨性", "reverse_scoring": False}, - # 宜人性维度 (F3) - { - "id": 17, - "content": "尽管人类社会存在着一些阴暗的东西(如战争、罪恶、欺诈),我仍然相信人性总的来说是善良的", - "factor": "宜人性", - "reverse_scoring": False, - }, - {"id": 18, "content": "我觉得大部分人基本上是心怀善意的", "factor": "宜人性", "reverse_scoring": False}, - {"id": 19, "content": "虽然社会上有骗子,但我觉得大部分人还是可信的", "factor": "宜人性", "reverse_scoring": False}, - {"id": 20, "content": "我不太关心别人是否受到不公正的待遇", "factor": "宜人性", "reverse_scoring": True}, - {"id": 21, "content": "我时常觉得别人的痛苦与我无关", "factor": "宜人性", "reverse_scoring": True}, - {"id": 22, "content": "我常为那些遭遇不幸的人感到难过", "factor": "宜人性", "reverse_scoring": False}, - {"id": 23, "content": "我是那种只照顾好自己,不替别人担忧的人", "factor": "宜人性", "reverse_scoring": True}, - {"id": 24, "content": "当别人向我诉说不幸时,我常感到难过", "factor": "宜人性", "reverse_scoring": False}, - # 开放性维度 (F4) - {"id": 25, "content": "我的想象力相当丰富", "factor": "开放性", "reverse_scoring": False}, - {"id": 26, "content": "我头脑中经常充满生动的画面", "factor": "开放性", "reverse_scoring": False}, - {"id": 27, "content": "我对许多事情有着很强的好奇心", "factor": "开放性", "reverse_scoring": False}, - {"id": 28, "content": "我喜欢冒险", "factor": "开放性", "reverse_scoring": False}, - {"id": 29, "content": "我是个勇于冒险,突破常规的人", "factor": "开放性", "reverse_scoring": False}, - {"id": 30, "content": "我身上具有别人没有的冒险精神", "factor": "开放性", "reverse_scoring": False}, - { - "id": 31, - "content": "我渴望学习一些新东西,即使它们与我的日常生活无关", - "factor": "开放性", - "reverse_scoring": False, - }, - { - "id": 32, - "content": "我很愿意也很容易接受那些新事物、新观点、新想法", - "factor": "开放性", - "reverse_scoring": False, - }, - # 外向性维度 (F5) - {"id": 33, "content": "我喜欢参加社交与娱乐聚会", "factor": "外向性", "reverse_scoring": False}, - {"id": 34, "content": "我对人多的聚会感到乏味", "factor": "外向性", "reverse_scoring": True}, - {"id": 35, "content": "我尽量避免参加人多的聚会和嘈杂的环境", "factor": "外向性", "reverse_scoring": True}, - {"id": 36, "content": "在热闹的聚会上,我常常表现主动并尽情玩耍", "factor": "外向性", "reverse_scoring": False}, - {"id": 37, "content": "有我在的场合一般不会冷场", "factor": "外向性", "reverse_scoring": False}, - {"id": 38, "content": "我希望成为领导者而不是被领导者", "factor": "外向性", "reverse_scoring": False}, - {"id": 39, "content": "在一个团体中,我希望处于领导地位", "factor": "外向性", "reverse_scoring": False}, - {"id": 40, "content": "别人多认为我是一个热情和友好的人", "factor": "外向性", "reverse_scoring": False}, -] - -# 因子维度说明 -FACTOR_DESCRIPTIONS = { - "外向性": { - "description": "反映个体神经系统的强弱和动力特征。外向性主要表现为个体在人际交往和社交活动中的倾向性," - "包括对社交活动的兴趣、" - "对人群的态度、社交互动中的主动程度以及在群体中的影响力。高分者倾向于积极参与社交活动,乐于与人交往,善于表达自我," - "并往往在群体中发挥领导作用;低分者则倾向于独处,不喜欢热闹的社交场合,表现出内向、安静的特征。", - "trait_words": ["热情", "活力", "社交", "主动"], - "subfactors": { - "合群性": "个体愿意与他人聚在一起,即接近人群的倾向;高分表现乐群、好交际,低分表现封闭、独处", - "热情": "个体对待别人时所表现出的态度;高分表现热情好客,低分表现冷淡", - "支配性": "个体喜欢指使、操纵他人,倾向于领导别人的特点;高分表现好强、发号施令,低分表现顺从、低调", - "活跃": "个体精力充沛,活跃、主动性等特点;高分表现活跃,低分表现安静", - }, - }, - "神经质": { - "description": "反映个体情绪的状态和体验内心苦恼的倾向性。这个维度主要关注个体在面对压力、" - "挫折和日常生活挑战时的情绪稳定性和适应能力。它包含了对焦虑、抑郁、愤怒等负面情绪的敏感程度," - "以及个体对这些情绪的调节和控制能力。高分者容易体验负面情绪,对压力较为敏感,情绪波动较大;" - "低分者则表现出较强的情绪稳定性,能够较好地应对压力和挫折。", - "trait_words": ["稳定", "沉着", "从容", "坚韧"], - "subfactors": { - "焦虑": "个体体验焦虑感的个体差异;高分表现坐立不安,低分表现平静", - "抑郁": "个体体验抑郁情感的个体差异;高分表现郁郁寡欢,低分表现平静", - "敏感多疑": "个体常常关注自己的内心活动,行为和过于意识人对自己的看法、评价;高分表现敏感多疑," - "低分表现淡定、自信", - "脆弱性": "个体在危机或困难面前无力、脆弱的特点;高分表现无能、易受伤、逃避,低分表现坚强", - "愤怒-敌意": "个体准备体验愤怒,及相关情绪的状态;高分表现暴躁易怒,低分表现平静", - }, - }, - "严谨性": { - "description": "反映个体在目标导向行为上的组织、坚持和动机特征。这个维度体现了个体在工作、" - "学习等目标性活动中的自我约束和行为管理能力。它涉及到个体的责任感、自律性、计划性、条理性以及完成任务的态度。" - "高分者往往表现出强烈的责任心、良好的组织能力、谨慎的决策风格和持续的努力精神;低分者则可能表现出随意性强、" - "缺乏规划、做事马虎或易放弃的特点。", - "trait_words": ["负责", "自律", "条理", "勤奋"], - "subfactors": { - "责任心": "个体对待任务和他人认真负责,以及对自己承诺的信守;高分表现有责任心、负责任," - "低分表现推卸责任、逃避处罚", - "自我控制": "个体约束自己的能力,及自始至终的坚持性;高分表现自制、有毅力,低分表现冲动、无毅力", - "审慎性": "个体在采取具体行动前的心理状态;高分表现谨慎、小心,低分表现鲁莽、草率", - "条理性": "个体处理事务和工作的秩序,条理和逻辑性;高分表现整洁、有秩序,低分表现混乱、遗漏", - "勤奋": "个体工作和学习的努力程度及为达到目标而表现出的进取精神;高分表现勤奋、刻苦,低分表现懒散", - }, - }, - "开放性": { - "description": "反映个体对新异事物、新观念和新经验的接受程度,以及在思维和行为方面的创新倾向。" - "这个维度体现了个体在认知和体验方面的广度、深度和灵活性。它包括对艺术的欣赏能力、对知识的求知欲、想象力的丰富程度," - "以及对冒险和创新的态度。高分者往往具有丰富的想象力、广泛的兴趣、开放的思维方式和创新的倾向;低分者则倾向于保守、" - "传统,喜欢熟悉和常规的事物。", - "trait_words": ["创新", "好奇", "艺术", "冒险"], - "subfactors": { - "幻想": "个体富于幻想和想象的水平;高分表现想象力丰富,低分表现想象力匮乏", - "审美": "个体对于艺术和美的敏感与热爱程度;高分表现富有艺术气息,低分表现一般对艺术不敏感", - "好奇心": "个体对未知事物的态度;高分表现兴趣广泛、好奇心浓,低分表现兴趣少、无好奇心", - "冒险精神": "个体愿意尝试有风险活动的个体差异;高分表现好冒险,低分表现保守", - "价值观念": "个体对新事物、新观念、怪异想法的态度;高分表现开放、坦然接受新事物,低分则相反", - }, - }, - "宜人性": { - "description": "反映个体在人际关系中的亲和倾向,体现了对他人的关心、同情和合作意愿。" - "这个维度主要关注个体与他人互动时的态度和行为特征,包括对他人的信任程度、同理心水平、" - "助人意愿以及在人际冲突中的处理方式。高分者通常表现出友善、富有同情心、乐于助人的特质,善于与他人建立和谐关系;" - "低分者则可能表现出较少的人际关注,在社交互动中更注重自身利益,较少考虑他人感受。", - "trait_words": ["友善", "同理", "信任", "合作"], - "subfactors": { - "信任": "个体对他人和/或他人言论的相信程度;高分表现信任他人,低分表现怀疑", - "体贴": "个体对别人的兴趣和需要的关注程度;高分表现体贴、温存,低分表现冷漠、不在乎", - "同情": "个体对处于不利地位的人或物的态度;高分表现富有同情心,低分表现冷漠", - }, - }, -} diff --git a/src/individuality/not_using/scene.py b/src/individuality/not_using/scene.py deleted file mode 100644 index 8d7af97f..00000000 --- a/src/individuality/not_using/scene.py +++ /dev/null @@ -1,43 +0,0 @@ -import json -import os -from typing import Any - - -def load_scenes() -> dict[str, Any]: - """ - 从JSON文件加载场景数据 - - Returns: - Dict: 包含所有场景的字典 - """ - current_dir = os.path.dirname(os.path.abspath(__file__)) - json_path = os.path.join(current_dir, "template_scene.json") - - with open(json_path, "r", encoding="utf-8") as f: - return json.load(f) - - -PERSONALITY_SCENES = load_scenes() - - -def get_scene_by_factor(factor: str) -> dict | None: - """ - 根据人格因子获取对应的情景测试 - - Args: - factor (str): 人格因子名称 - - Returns: - dict: 包含情景描述的字典 - """ - return PERSONALITY_SCENES.get(factor, None) - - -def get_all_scenes() -> dict: - """ - 获取所有情景测试 - - Returns: - Dict: 所有情景测试的字典 - """ - return PERSONALITY_SCENES diff --git a/src/individuality/not_using/template_scene.json b/src/individuality/not_using/template_scene.json deleted file mode 100644 index a6542e75..00000000 --- a/src/individuality/not_using/template_scene.json +++ /dev/null @@ -1,112 +0,0 @@ -{ - "外向性": { - "场景1": { - "scenario": "你刚刚搬到一个新的城市工作。今天是你入职的第一天,在公司的电梯里,一位同事微笑着和你打招呼:\n\n同事:「嗨!你是新来的同事吧?我是市场部的小林。」\n\n同事看起来很友善,还主动介绍说:「待会午饭时间,我们部门有几个人准备一起去楼下新开的餐厅,你要一起来吗?可以认识一下其他同事。」", - "explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。" - }, - "场景2": { - "scenario": "在大学班级群里,班长发起了一个组织班级联谊活动的投票:\n\n班长:「大家好!下周末我们准备举办一次班级联谊活动,地点在学校附近的KTV。想请大家报名参加,也欢迎大家邀请其他班级的同学!」\n\n已经有几个同学在群里积极响应,有人@你问你要不要一起参加。", - "explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。" - }, - "场景3": { - "scenario": "你在社交平台上发布了一条动态,收到了很多陌生网友的评论和私信:\n\n网友A:「你说的这个观点很有意思!想和你多交流一下。」\n\n网友B:「我也对这个话题很感兴趣,要不要建个群一起讨论?」", - "explanation": "通过网络社交场景,观察个体对线上社交的态度。" - }, - "场景4": { - "scenario": "你暗恋的对象今天主动来找你:\n\n对方:「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?如果你有时间的话,可以一起吃个饭聊聊。」", - "explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。" - }, - "场景5": { - "scenario": "在一次线下读书会上,主持人突然点名让你分享读后感:\n\n主持人:「听说你对这本书很有见解,能不能和大家分享一下你的想法?」\n\n现场有二十多个陌生的读书爱好者,都期待地看着你。", - "explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。" - } - }, - "神经质": { - "场景1": { - "scenario": "你正在准备一个重要的项目演示,这关系到你的晋升机会。就在演示前30分钟,你收到了主管发来的消息:\n\n主管:「临时有个变动,CEO也会来听你的演示。他对这个项目特别感兴趣。」\n\n正当你准备回复时,主管又发来一条:「对了,能不能把演示时间压缩到15分钟?CEO下午还有其他安排。你之前准备的是30分钟的版本对吧?」", - "explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。" - }, - "场景2": { - "scenario": "期末考试前一天晚上,你收到了好朋友发来的消息:\n\n好朋友:「不好意思这么晚打扰你...我看你平时成绩很好,能不能帮我解答几个问题?我真的很担心明天的考试。」\n\n你看了看时间,已经是晚上11点,而你原本计划的复习还没完成。", - "explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。" - }, - "场景3": { - "scenario": "你在社交媒体上发表的一个观点引发了争议,有不少人开始批评你:\n\n网友A:「这种观点也好意思说出来,真是无知。」\n\n网友B:「建议楼主先去补补课再来发言。」\n\n评论区里的负面评论越来越多,还有人开始人身攻击。", - "explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。" - }, - "场景4": { - "scenario": "你和恋人约好今天一起看电影,但在约定时间前半小时,对方发来消息:\n\n恋人:「对不起,我临时有点事,可能要迟到一会儿。」\n\n二十分钟后,对方又发来消息:「可能要再等等,抱歉!」\n\n电影快要开始了,但对方还是没有出现。", - "explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。" - }, - "场景5": { - "scenario": "在一次重要的小组展示中,你的组员在演示途中突然卡壳了:\n\n组员小声对你说:「我忘词了,接下来的部分是什么来着...」\n\n台下的老师和同学都在等待,气氛有些尴尬。", - "explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。" - } - }, - "严谨性": { - "场景1": { - "scenario": "你是团队的项目负责人,刚刚接手了一个为期两个月的重要项目。在第一次团队会议上:\n\n小王:「老大,我觉得两个月时间很充裕,我们先做着看吧,遇到问题再解决。」\n\n小张:「要不要先列个时间表?不过感觉太详细的计划也没必要,点到为止就行。」\n\n小李:「客户那边说如果能提前完成有奖励,我觉得我们可以先做快一点的部分。」", - "explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。" - }, - "场景2": { - "scenario": "期末小组作业,组长让大家分工完成一份研究报告。在截止日期前三天:\n\n组员A:「我的部分大概写完了,感觉还行。」\n\n组员B:「我这边可能还要一天才能完成,最近太忙了。」\n\n组员C发来一份没有任何引用出处、可能存在抄袭的内容:「我写完了,你们看看怎么样?」", - "explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。" - }, - "场景3": { - "scenario": "你在一个兴趣小组的群聊中,大家正在讨论举办一次线下活动:\n\n成员A:「到时候见面就知道具体怎么玩了!」\n\n成员B:「对啊,随意一点挺好的。」\n\n成员C:「人来了自然就热闹了。」", - "explanation": "通过活动组织场景,观察个体对活动计划的态度。" - }, - "场景4": { - "scenario": "你的好友小明邀请你一起参加一个重要的演出活动,他说:\n\n小明:「到时候我们就即兴发挥吧!不用排练了,我相信我们的默契。」\n\n距离演出还有三天,但节目内容、配乐和服装都还没有确定。", - "explanation": "通过演出准备场景,观察个体的计划性和对不确定性的接受程度。" - }, - "场景5": { - "scenario": "在一个重要的团队项目中,你发现一个同事的工作存在明显错误:\n\n同事:「差不多就行了,反正领导也看不出来。」\n\n这个错误可能不会立即造成问题,但长期来看可能会影响项目质量。", - "explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。" - } - }, - "开放性": { - "场景1": { - "scenario": "周末下午,你的好友小美兴致勃勃地给你打电话:\n\n小美:「我刚发现一个特别有意思的沉浸式艺术展!不是传统那种挂画的展览,而是把整个空间都变成了艺术品。观众要穿特制的服装,还要带上VR眼镜,好像还有AI实时互动!」\n\n小美继续说:「虽然票价不便宜,但听说体验很独特。网上评价两极分化,有人说是前所未有的艺术革新,也有人说是哗众取宠。要不要周末一起去体验一下?」", - "explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。" - }, - "场景2": { - "scenario": "在一节创意写作课上,老师提出了一个特别的作业:\n\n老师:「下周的作业是用AI写作工具协助创作一篇小说。你们可以自由探索如何与AI合作,打破传统写作方式。」\n\n班上随即展开了激烈讨论,有人认为这是对创作的亵渎,也有人对这种新形式感到兴奋。", - "explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。" - }, - "场景3": { - "scenario": "在社交媒体上,你看到一个朋友分享了一种新的学习方式:\n\n「最近我在尝试'沉浸式学习',就是完全投入到一个全新的领域。比如学习一门陌生的语言,或者尝试完全不同的职业技能。虽然过程会很辛苦,但这种打破舒适圈的感觉真的很棒!」\n\n评论区里争论不断,有人认为这种学习方式效率高,也有人觉得太激进。", - "explanation": "通过新型学习方式,观察个体对创新和挑战的态度。" - }, - "场景4": { - "scenario": "你的朋友向你推荐了一种新的饮食方式:\n\n朋友:「我最近在尝试'未来食品',比如人造肉、3D打印食物、昆虫蛋白等。这不仅对环境友好,营养也很均衡。要不要一起来尝试看看?」\n\n这个提议让你感到好奇又犹豫,你之前从未尝试过这些新型食物。", - "explanation": "通过饮食创新场景,观察个体对新事物的接受度和尝试精神。" - }, - "场景5": { - "scenario": "在一次朋友聚会上,大家正在讨论未来职业规划:\n\n朋友A:「我准备辞职去做自媒体,专门介绍一些小众的文化和艺术。」\n\n朋友B:「我想去学习生物科技,准备转行做人造肉研发。」\n\n朋友C:「我在考虑加入一个区块链创业项目,虽然风险很大。」", - "explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。" - } - }, - "宜人性": { - "场景1": { - "scenario": "在回家的公交车上,你遇到这样一幕:\n\n一位老奶奶颤颤巍巍地上了车,车上座位已经坐满了。她站在你旁边,看起来很疲惫。这时你听到前排两个年轻人的对话:\n\n年轻人A:「那个老太太好像站不稳,看起来挺累的。」\n\n年轻人B:「现在的老年人真是...我看她包里还有菜,肯定是去菜市场买完菜回来的,这么多人都不知道叫子女开车接送。」\n\n就在这时,老奶奶一个趔趄,差点摔倒。她扶住了扶手,但包里的东西洒了一些出来。", - "explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。" - }, - "场景2": { - "scenario": "在班级群里,有同学发起为生病住院的同学捐款:\n\n同学A:「大家好,小林最近得了重病住院,医药费很贵,家里负担很重。我们要不要一起帮帮他?」\n\n同学B:「我觉得这是他家里的事,我们不方便参与吧。」\n\n同学C:「但是都是同学一场,帮帮忙也是应该的。」", - "explanation": "通过同学互助场景,观察个体的助人意愿和同理心。" - }, - "场景3": { - "scenario": "在一个网络讨论组里,有人发布了求助信息:\n\n求助者:「最近心情很低落,感觉生活很压抑,不知道该怎么办...」\n\n评论区里已经有一些回复:\n「生活本来就是这样,想开点!」\n「你这样子太消极了,要积极面对。」\n「谁还没点烦心事啊,过段时间就好了。」", - "explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。" - }, - "场景4": { - "scenario": "你的朋友向你倾诉工作压力:\n\n朋友:「最近工作真的好累,感觉快坚持不下去了...」\n\n但今天你也遇到了很多烦心事,心情也不太好。", - "explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。" - }, - "场景5": { - "scenario": "在一次团队项目中,新来的同事小王因为经验不足,造成了一个严重的错误。在部门会议上:\n\n主管:「这个错误造成了很大的损失,是谁负责的这部分?」\n\n小王看起来很紧张,欲言又止。你知道是他造成的错误,同时你也是这个项目的共同负责人。", - "explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。" - } - } -} \ No newline at end of file diff --git a/src/main.py b/src/main.py index 0c24ad04..bc90e056 100644 --- a/src/main.py +++ b/src/main.py @@ -10,7 +10,6 @@ from src.chat.message_receive.chat_stream import get_chat_manager from src.config.config import global_config from src.chat.message_receive.bot import chat_bot from src.common.logger import get_logger -from src.individuality.individuality import get_individuality, Individuality from src.common.server import get_global_server, Server from src.mood.mood_manager import mood_manager from src.chat.knowledge import lpmm_start_up @@ -43,8 +42,6 @@ class MainSystem: else: self.hippocampus_manager = None - self.individuality: Individuality = get_individuality() - # 使用消息API替代直接的FastAPI实例 self.app: MessageServer = get_global_api() self.server: Server = get_global_server() @@ -117,9 +114,6 @@ class MainSystem: # 将bot.py中的chat_bot.message_process消息处理函数注册到api.py的消息处理基类中 self.app.register_message_handler(chat_bot.message_process) - - # 初始化个体特征 - await self.individuality.initialize() await check_and_run_migrations() diff --git a/src/person_info/person_info.py b/src/person_info/person_info.py index 9122dc77..96009d13 100644 --- a/src/person_info/person_info.py +++ b/src/person_info/person_info.py @@ -637,7 +637,6 @@ class PersonInfoManager: current_name_set = set(self.person_name_list.values()) while current_try < max_retries: - # prompt_personality =get_individuality().get_prompt(x_person=2, level=1) bot_name = global_config.bot.nickname qv_name_prompt = f"你是{bot_name},一个伪装成人类的AI,你不能让别人发现这一点," diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml index eba7012d..945d9759 100644 --- a/template/bot_config_template.toml +++ b/template/bot_config_template.toml @@ -1,5 +1,5 @@ [inner] -version = "6.5.0" +version = "6.6.0" #----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读---- #如果你想要修改配置文件,请递增version的值 @@ -22,6 +22,7 @@ alias_names = ["麦叠", "牢麦"] # 麦麦的别名 personality_core = "是一个女孩子" # 人格的细节,描述人格的一些侧面 personality_side = "有时候说话不过脑子,喜欢开玩笑, 有时候会表现得无语,有时候会喜欢说一些奇怪的话" + #アイデンティティがない 生まれないらららら # 可以描述外貌,性别,身高,职业,属性等等描述 identity = "年龄为19岁,是女孩子,身高为160cm,有黑色的短发" @@ -29,10 +30,11 @@ identity = "年龄为19岁,是女孩子,身高为160cm,有黑色的短发" # 描述麦麦说话的表达风格,表达习惯,如要修改,可以酌情新增内容 reply_style = "回复可以简短一些。可以参考贴吧,知乎和微博的回复风格,回复不要浮夸,不要用夸张修辞,平淡一些。不要浮夸,不要夸张修辞。" +# 描述麦麦的行为风格,会影响麦麦什么时候回复,什么时候使用动作,麦麦考虑的可就多了 plan_style = "当你刚刚发送了消息,没有人回复时,不要选择action,如果有别的动作(非回复)满足条件,可以选择,当你一次发送了太多消息,为了避免打扰聊天节奏,不要选择动作" -compress_personality = false # 是否压缩人格,压缩后会精简人格信息,节省token消耗并提高回复性能,但是会丢失一些信息,如果人设不长,可以关闭 -compress_identity = true # 是否压缩身份,压缩后会精简身份信息,节省token消耗并提高回复性能,但是会丢失一些信息,如果不长,可以关闭 +# 麦麦的兴趣,会影响麦麦对什么话题进行回复 +interest = "对技术相关话题,游戏和动漫相关话题感兴趣,也对日常话题感兴趣,不喜欢太过沉重严肃的话题" [expression] # 表达学习配置