pull/1497/merge
Liskarm 2026-01-25 20:54:16 +00:00 committed by GitHub
commit 65eff115b3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 22 additions and 12 deletions

View File

@ -143,10 +143,11 @@ export const TaskConfigCard = React.memo(function TaskConfigCard({
<SelectContent>
<SelectItem value="balance">balance</SelectItem>
<SelectItem value="random">random</SelectItem>
<SelectItem value="sequential">sequential</SelectItem>
</SelectContent>
</Select>
<p className="text-xs text-muted-foreground">
使
使
</p>
</div>
</div>

View File

@ -98,7 +98,7 @@ class TaskConfig(ConfigBase):
"""慢请求阈值(秒),超过此值会输出警告日志"""
selection_strategy: str = field(default="balance")
"""模型选择策略balance负载均衡或 random随机选择"""
"""模型选择策略balance负载均衡、random随机选择或 sequential顺序优先"""
@dataclass

View File

@ -267,7 +267,7 @@ class LLMRequest:
def _select_model(self, exclude_models: Optional[Set[str]] = None) -> Tuple[ModelInfo, APIProvider, BaseClient]:
"""
根据配置的策略选择模型balance负载均衡 random随机选择
根据配置的策略选择模型balance负载均衡random随机选择 sequential顺序优先
"""
available_models = {
model: scores
@ -282,6 +282,15 @@ class LLMRequest:
if strategy == "random":
# 随机选择策略
selected_model_name = random.choice(list(available_models.keys()))
elif strategy == "sequential":
# 顺序优先策略按照model_list中的顺序选择第一个可用的模型
selected_model_name = None
for model_name in self.model_for_task.model_list:
if model_name in available_models:
selected_model_name = model_name
break
if selected_model_name is None:
raise RuntimeError("没有可用的模型可供选择。所有模型均已尝试失败。")
elif strategy == "balance":
# 负载均衡策略根据总tokens和惩罚值选择
selected_model_name = min(

View File

@ -140,45 +140,45 @@ model_list = ["siliconflow-deepseek-v3.2"] # 使用的模型列表,每个子
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 4096 # 最大输出token数
slow_threshold = 15.0 # 慢请求阈值(秒),模型等待回复时间超过此值会输出警告日志
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
[model_task_config.tool_use] #功能模型,需要使用支持工具调用的模型,请使用较快的小模型(调用量较大)
model_list = ["qwen3-30b","qwen3-next-80b"]
temperature = 0.7
max_tokens = 1024
slow_threshold = 10.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
[model_task_config.replyer] # 首要回复模型,还用于表达方式学习
model_list = ["siliconflow-deepseek-v3.2","siliconflow-deepseek-v3.2-think","siliconflow-glm-4.6","siliconflow-glm-4.6-think"]
temperature = 0.3 # 模型温度新V3建议0.1-0.3
max_tokens = 2048
slow_threshold = 25.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
[model_task_config.planner] #决策:负责决定麦麦该什么时候回复的模型
model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.3
max_tokens = 800
slow_threshold = 12.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
[model_task_config.vlm] # 图像识别模型
model_list = ["qwen3-vl-30"]
max_tokens = 256
slow_threshold = 15.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
[model_task_config.voice] # 语音识别模型
model_list = ["sensevoice-small"]
slow_threshold = 12.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
# 嵌入模型
[model_task_config.embedding]
model_list = ["bge-m3"]
slow_threshold = 5.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
# ------------LPMM知识库模型------------
@ -187,11 +187,11 @@ model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.2
max_tokens = 800
slow_threshold = 20.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先
[model_task_config.lpmm_rdf_build] # RDF构建模型
model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.2
max_tokens = 800
slow_threshold = 20.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
selection_strategy = "random" # 模型选择策略balance负载均衡、random随机选择或 sequential顺序优先