mirror of https://github.com/Mai-with-u/MaiBot.git
fix ruff
parent
d693a2dabb
commit
3c7e868d6d
|
|
@ -1,613 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
基于Embedding的兴趣度计算测试脚本
|
||||
使用MaiBot-Core的EmbeddingStore计算兴趣描述与目标文本的关联度
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
from typing import List, Dict, Tuple, Optional
|
||||
import time
|
||||
import json
|
||||
import asyncio
|
||||
from src.chat.knowledge.embedding_store import EmbeddingStore, cosine_similarity
|
||||
from src.chat.knowledge.embedding_store import EMBEDDING_DATA_DIR_STR
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import model_config
|
||||
|
||||
|
||||
class InterestScorer:
|
||||
"""基于Embedding的兴趣度计算器"""
|
||||
|
||||
def __init__(self, namespace: str = "interest_test"):
|
||||
"""初始化兴趣度计算器"""
|
||||
self.embedding_store = EmbeddingStore(namespace, EMBEDDING_DATA_DIR_STR)
|
||||
|
||||
async def get_embedding(self, text: str) -> Tuple[Optional[List[float]], float]:
|
||||
"""获取文本的嵌入向量"""
|
||||
start_time = time.time()
|
||||
try:
|
||||
# 直接使用异步方式获取嵌入
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import model_config
|
||||
|
||||
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
|
||||
embedding, _ = await llm.get_embedding(text)
|
||||
|
||||
end_time = time.time()
|
||||
elapsed = end_time - start_time
|
||||
|
||||
if embedding and len(embedding) > 0:
|
||||
return embedding, elapsed
|
||||
return None, elapsed
|
||||
except Exception as e:
|
||||
print(f"获取嵌入向量失败: {e}")
|
||||
return None, 0.0
|
||||
|
||||
async def calculate_similarity(self, text1: str, text2: str) -> Tuple[float, float, float]:
|
||||
"""计算两段文本的余弦相似度,返回(相似度, 文本1耗时, 文本2耗时)"""
|
||||
emb1, time1 = await self.get_embedding(text1)
|
||||
emb2, time2 = await self.get_embedding(text2)
|
||||
|
||||
if emb1 is None or emb2 is None:
|
||||
return 0.0, time1, time2
|
||||
|
||||
return cosine_similarity(emb1, emb2), time1, time2
|
||||
|
||||
async def calculate_interest_score(self, interest_text: str, target_text: str) -> Dict:
|
||||
"""
|
||||
计算兴趣度分数
|
||||
|
||||
Args:
|
||||
interest_text: 兴趣描述文本
|
||||
target_text: 目标文本
|
||||
|
||||
Returns:
|
||||
包含各种分数的字典
|
||||
"""
|
||||
# 只计算语义相似度(嵌入分数)
|
||||
semantic_score, interest_time, target_time = await self.calculate_similarity(interest_text, target_text)
|
||||
|
||||
# 直接使用语义相似度作为最终分数
|
||||
final_score = semantic_score
|
||||
|
||||
return {
|
||||
"final_score": final_score,
|
||||
"semantic_score": semantic_score,
|
||||
"timing": {
|
||||
"interest_embedding_time": interest_time,
|
||||
"target_embedding_time": target_time,
|
||||
"total_time": interest_time + target_time
|
||||
}
|
||||
}
|
||||
|
||||
async def batch_calculate(self, interest_text: str, target_texts: List[str]) -> List[Dict]:
|
||||
"""批量计算兴趣度"""
|
||||
results = []
|
||||
total_start_time = time.time()
|
||||
|
||||
print(f"开始批量计算兴趣度...")
|
||||
print(f"兴趣文本: {interest_text}")
|
||||
print(f"目标文本数量: {len(target_texts)}")
|
||||
|
||||
# 获取兴趣文本的嵌入向量(只需要一次)
|
||||
interest_embedding, interest_time = await self.get_embedding(interest_text)
|
||||
if interest_embedding is None:
|
||||
print("无法获取兴趣文本的嵌入向量")
|
||||
return []
|
||||
|
||||
print(f"兴趣文本嵌入计算耗时: {interest_time:.3f}秒")
|
||||
|
||||
total_target_time = 0.0
|
||||
|
||||
for i, target_text in enumerate(target_texts):
|
||||
print(f"处理第 {i+1}/{len(target_texts)} 个文本...")
|
||||
|
||||
# 获取目标文本的嵌入向量
|
||||
target_embedding, target_time = await self.get_embedding(target_text)
|
||||
total_target_time += target_time
|
||||
|
||||
if target_embedding is None:
|
||||
semantic_score = 0.0
|
||||
else:
|
||||
semantic_score = cosine_similarity(interest_embedding, target_embedding)
|
||||
|
||||
# 直接使用语义相似度作为最终分数
|
||||
final_score = semantic_score
|
||||
|
||||
results.append({
|
||||
"target_text": target_text,
|
||||
"final_score": final_score,
|
||||
"semantic_score": semantic_score,
|
||||
"timing": {
|
||||
"target_embedding_time": target_time,
|
||||
"item_total_time": target_time
|
||||
}
|
||||
})
|
||||
|
||||
# 按分数排序
|
||||
results.sort(key=lambda x: x["final_score"], reverse=True)
|
||||
|
||||
total_time = time.time() - total_start_time
|
||||
avg_target_time = total_target_time / len(target_texts) if target_texts else 0
|
||||
|
||||
print(f"\n=== 性能统计 ===")
|
||||
print(f"兴趣文本嵌入计算耗时: {interest_time:.3f}秒")
|
||||
print(f"目标文本嵌入计算总耗时: {total_target_time:.3f}秒")
|
||||
print(f"目标文本嵌入计算平均耗时: {avg_target_time:.3f}秒")
|
||||
print(f"总耗时: {total_time:.3f}秒")
|
||||
print(f"平均每个目标文本处理耗时: {total_time / len(target_texts):.3f}秒")
|
||||
|
||||
return results
|
||||
|
||||
async def generate_paraphrases(self, original_text: str, num_sentences: int = 5) -> List[str]:
|
||||
"""
|
||||
使用LLM生成近义句子
|
||||
|
||||
Args:
|
||||
original_text: 原始文本
|
||||
num_sentences: 生成句子数量
|
||||
|
||||
Returns:
|
||||
近义句子列表
|
||||
"""
|
||||
try:
|
||||
# 创建LLM请求实例
|
||||
llm_request = LLMRequest(
|
||||
model_set=model_config.model_task_config.replyer,
|
||||
request_type="paraphrase_generator"
|
||||
)
|
||||
|
||||
# 构建生成近义句子的提示词
|
||||
prompt = f"""请为以下兴趣描述生成{num_sentences}个意义相近但表达不同的句子:
|
||||
|
||||
原始兴趣描述:{original_text}
|
||||
|
||||
要求:
|
||||
1. 保持原意不变,但尽量自由发挥,使用不同的表达方式,内容也可以有差异
|
||||
2. 句子结构要有所变化
|
||||
3. 可以适当调整语气和重点
|
||||
4. 每个句子都要完整且自然
|
||||
5. 只返回句子,不要编号,每行一个句子
|
||||
|
||||
生成的近义句子:"""
|
||||
|
||||
print(f"正在生成近义句子...")
|
||||
content, (reasoning, model_name, tool_calls) = await llm_request.generate_response_async(prompt)
|
||||
|
||||
# 解析生成的句子
|
||||
sentences = []
|
||||
for line in content.strip().split('\n'):
|
||||
line = line.strip()
|
||||
if line and not line.startswith('生成') and not line.startswith('近义'):
|
||||
sentences.append(line)
|
||||
|
||||
# 确保返回指定数量的句子
|
||||
sentences = sentences[:num_sentences]
|
||||
print(f"成功生成 {len(sentences)} 个近义句子")
|
||||
print(f"使用的模型: {model_name}")
|
||||
|
||||
return sentences
|
||||
|
||||
except Exception as e:
|
||||
print(f"生成近义句子失败: {e}")
|
||||
return []
|
||||
|
||||
async def evaluate_all_paraphrases(self, original_text: str, target_texts: List[str], num_sentences: int = 5) -> Dict:
|
||||
"""
|
||||
评估原始文本和所有近义句子的兴趣度
|
||||
|
||||
Args:
|
||||
original_text: 原始兴趣描述文本
|
||||
target_texts: 目标文本列表
|
||||
num_sentences: 生成近义句子数量
|
||||
|
||||
Returns:
|
||||
包含所有评估结果的字典
|
||||
"""
|
||||
print(f"\n=== 开始近义句子兴趣度评估 ===")
|
||||
print(f"原始兴趣描述: {original_text}")
|
||||
print(f"目标文本数量: {len(target_texts)}")
|
||||
print(f"生成近义句子数量: {num_sentences}")
|
||||
|
||||
# 生成近义句子
|
||||
paraphrases = await self.generate_paraphrases(original_text, num_sentences)
|
||||
if not paraphrases:
|
||||
print("生成近义句子失败,使用原始文本进行评估")
|
||||
paraphrases = []
|
||||
|
||||
# 所有待评估的文本(原始文本 + 近义句子)
|
||||
all_texts = [original_text] + paraphrases
|
||||
|
||||
# 对每个文本进行兴趣度评估
|
||||
evaluation_results = {}
|
||||
|
||||
for i, text in enumerate(all_texts):
|
||||
text_type = "原始文本" if i == 0 else f"近义句子{i}"
|
||||
print(f"\n--- 评估 {text_type} ---")
|
||||
print(f"文本内容: {text}")
|
||||
|
||||
# 计算兴趣度
|
||||
results = await self.batch_calculate(text, target_texts)
|
||||
evaluation_results[text_type] = {
|
||||
"text": text,
|
||||
"results": results,
|
||||
"top_score": results[0]["final_score"] if results else 0.0,
|
||||
"average_score": sum(r["final_score"] for r in results) / len(results) if results else 0.0
|
||||
}
|
||||
|
||||
return {
|
||||
"original_text": original_text,
|
||||
"paraphrases": paraphrases,
|
||||
"evaluations": evaluation_results,
|
||||
"summary": self._generate_summary(evaluation_results, target_texts)
|
||||
}
|
||||
|
||||
def _generate_summary(self, evaluation_results: Dict, target_texts: List[str]) -> Dict:
|
||||
"""生成评估摘要 - 关注目标句子的表现"""
|
||||
summary = {
|
||||
"best_performer": None,
|
||||
"worst_performer": None,
|
||||
"average_scores": {},
|
||||
"max_scores": {},
|
||||
"rankings": [],
|
||||
"target_stats": {},
|
||||
"target_rankings": []
|
||||
}
|
||||
|
||||
scores = []
|
||||
|
||||
for text_type, data in evaluation_results.items():
|
||||
scores.append({
|
||||
"text_type": text_type,
|
||||
"text": data["text"],
|
||||
"top_score": data["top_score"],
|
||||
"average_score": data["average_score"]
|
||||
})
|
||||
|
||||
# 按top_score排序
|
||||
scores.sort(key=lambda x: x["top_score"], reverse=True)
|
||||
|
||||
summary["rankings"] = scores
|
||||
summary["best_performer"] = scores[0] if scores else None
|
||||
summary["worst_performer"] = scores[-1] if scores else None
|
||||
|
||||
# 计算原始文本统计
|
||||
original_score = next((s for s in scores if s["text_type"] == "原始文本"), None)
|
||||
if original_score:
|
||||
summary["average_scores"]["original"] = original_score["average_score"]
|
||||
summary["max_scores"]["original"] = original_score["top_score"]
|
||||
|
||||
# 计算目标句子的统计信息
|
||||
target_stats = {}
|
||||
for i, target_text in enumerate(target_texts):
|
||||
target_key = f"目标{i+1}"
|
||||
scores_for_target = []
|
||||
|
||||
# 收集所有兴趣描述对该目标文本的分数
|
||||
for text_type, data in evaluation_results.items():
|
||||
for result in data["results"]:
|
||||
if result["target_text"] == target_text:
|
||||
scores_for_target.append(result["final_score"])
|
||||
|
||||
if scores_for_target:
|
||||
target_stats[target_key] = {
|
||||
"target_text": target_text,
|
||||
"scores": scores_for_target,
|
||||
"average": sum(scores_for_target) / len(scores_for_target),
|
||||
"max": max(scores_for_target),
|
||||
"min": min(scores_for_target),
|
||||
"std": (sum((x - sum(scores_for_target) / len(scores_for_target)) ** 2 for x in scores_for_target) / len(scores_for_target)) ** 0.5
|
||||
}
|
||||
|
||||
summary["target_stats"] = target_stats
|
||||
|
||||
# 按平均分对目标文本排序
|
||||
target_rankings = []
|
||||
for target_key, stats in target_stats.items():
|
||||
target_rankings.append({
|
||||
"target_key": target_key,
|
||||
"target_text": stats["target_text"],
|
||||
"average_score": stats["average"],
|
||||
"max_score": stats["max"],
|
||||
"min_score": stats["min"],
|
||||
"std_score": stats["std"]
|
||||
})
|
||||
|
||||
target_rankings.sort(key=lambda x: x["average_score"], reverse=True)
|
||||
summary["target_rankings"] = target_rankings
|
||||
|
||||
# 计算目标文本的整体统计
|
||||
if target_rankings:
|
||||
all_target_averages = [t["average_score"] for t in target_rankings]
|
||||
all_target_scores = []
|
||||
for stats in target_stats.values():
|
||||
all_target_scores.extend(stats["scores"])
|
||||
|
||||
summary["target_overall"] = {
|
||||
"avg_of_averages": sum(all_target_averages) / len(all_target_averages),
|
||||
"overall_max": max(all_target_scores),
|
||||
"overall_min": min(all_target_scores),
|
||||
"best_target": target_rankings[0]["target_text"],
|
||||
"worst_target": target_rankings[-1]["target_text"]
|
||||
}
|
||||
|
||||
return summary
|
||||
|
||||
|
||||
async def run_single_test():
|
||||
"""运行单个测试"""
|
||||
print("单个兴趣度测试")
|
||||
print("=" * 40)
|
||||
|
||||
# 输入兴趣文本
|
||||
# interest_text = input("请输入兴趣描述文本: ").strip()
|
||||
# if not interest_text:
|
||||
# print("兴趣描述不能为空")
|
||||
# return
|
||||
|
||||
interest_text ="对技术相关话题,游戏和动漫相关话题感兴趣,也对日常话题感兴趣,不喜欢太过沉重严肃的话题"
|
||||
|
||||
# 输入目标文本
|
||||
print("请输入目标文本 (输入空行结束):")
|
||||
import random
|
||||
target_texts = [
|
||||
"AveMujica非常好看,你看了吗",
|
||||
"明日方舟这个游戏挺好玩的",
|
||||
"你能不能说点正经的",
|
||||
"明日方舟挺好玩的",
|
||||
"你的名字非常好看,你看了吗",
|
||||
"《你的名字》非常好看,你看了吗",
|
||||
"我们来聊聊苏联政治吧",
|
||||
"轻音少女非常好看,你看了吗",
|
||||
"我还挺喜欢打游戏的",
|
||||
"我嘞个原神玩家啊",
|
||||
"我心买了PlayStation5",
|
||||
"直接Steam",
|
||||
"有没有R"
|
||||
]
|
||||
random.shuffle(target_texts)
|
||||
# while True:
|
||||
# line = input().strip()
|
||||
# if not line:
|
||||
# break
|
||||
# target_texts.append(line)
|
||||
|
||||
# if not target_texts:
|
||||
# print("目标文本不能为空")
|
||||
# return
|
||||
|
||||
# 计算兴趣度
|
||||
scorer = InterestScorer()
|
||||
results = await scorer.batch_calculate(interest_text, target_texts)
|
||||
|
||||
# 显示结果
|
||||
print(f"\n兴趣度排序结果:")
|
||||
print("-" * 80)
|
||||
print(f"{'排名':<4} {'最终分数':<10} {'语义分数':<10} {'耗时(秒)':<10} {'目标文本'}")
|
||||
print("-" * 80)
|
||||
|
||||
for j, result in enumerate(results):
|
||||
target_text = result['target_text']
|
||||
if len(target_text) > 40:
|
||||
target_text = target_text[:37] + "..."
|
||||
|
||||
timing = result.get('timing', {})
|
||||
item_time = timing.get('item_total_time', 0.0)
|
||||
|
||||
print(f"{j+1:<4} {result['final_score']:<10.3f} {result['semantic_score']:<10.3f} "
|
||||
f"{item_time:<10.3f} {target_text}")
|
||||
|
||||
|
||||
async def run_paraphrase_test():
|
||||
"""运行近义句子测试"""
|
||||
print("近义句子兴趣度对比测试")
|
||||
print("=" * 40)
|
||||
|
||||
# 输入兴趣文本
|
||||
interest_text = "对技术相关话题,游戏和动漫相关话题感兴趣,比如明日方舟和原神,也对日常话题感兴趣,不喜欢太过沉重严肃的话题"
|
||||
|
||||
# 输入目标文本
|
||||
print("请输入目标文本 (输入空行结束):")
|
||||
# target_texts = []
|
||||
# while True:
|
||||
# line = input().strip()
|
||||
# if not line:
|
||||
# break
|
||||
# target_texts.append(line)
|
||||
target_texts = [
|
||||
"AveMujica非常好看,你看了吗",
|
||||
"明日方舟这个游戏挺好玩的",
|
||||
"你能不能说点正经的",
|
||||
"明日方舟挺好玩的",
|
||||
"你的名字非常好看,你看了吗",
|
||||
"《你的名字》非常好看,你看了吗",
|
||||
"我们来聊聊苏联政治吧",
|
||||
"轻音少女非常好看,你看了吗",
|
||||
"我还挺喜欢打游戏的",
|
||||
"刚加好友就视奸空间14条",
|
||||
"可乐老大加我好友,我先日一遍空间",
|
||||
"鸟一茬茬的",
|
||||
"可乐可以是m,群友可以是s"
|
||||
]
|
||||
|
||||
if not target_texts:
|
||||
print("目标文本不能为空")
|
||||
return
|
||||
|
||||
# 创建评估器
|
||||
scorer = InterestScorer()
|
||||
|
||||
# 运行评估
|
||||
result = await scorer.evaluate_all_paraphrases(interest_text, target_texts, num_sentences=5)
|
||||
|
||||
# 显示结果
|
||||
display_paraphrase_results(result, target_texts)
|
||||
|
||||
|
||||
def display_paraphrase_results(result: Dict, target_texts: List[str]):
|
||||
"""显示近义句子评估结果"""
|
||||
print("\n" + "=" * 80)
|
||||
print("近义句子兴趣度评估结果")
|
||||
print("=" * 80)
|
||||
|
||||
# 显示目标文本
|
||||
print(f"\n📋 目标文本列表:")
|
||||
print("-" * 40)
|
||||
for i, target in enumerate(target_texts):
|
||||
print(f"{i+1}. {target}")
|
||||
|
||||
# 显示生成的近义句子
|
||||
print(f"\n📝 生成的近义句子 (作为兴趣描述):")
|
||||
print("-" * 40)
|
||||
for i, paraphrase in enumerate(result["paraphrases"]):
|
||||
print(f"{i+1}. {paraphrase}")
|
||||
|
||||
# 显示摘要
|
||||
summary = result["summary"]
|
||||
print(f"\n📊 评估摘要:")
|
||||
print("-" * 40)
|
||||
|
||||
if summary["best_performer"]:
|
||||
print(f"最佳表现: {summary['best_performer']['text_type']} (最高分: {summary['best_performer']['top_score']:.3f})")
|
||||
|
||||
if summary["worst_performer"]:
|
||||
print(f"最差表现: {summary['worst_performer']['text_type']} (最高分: {summary['worst_performer']['top_score']:.3f})")
|
||||
|
||||
print(f"原始文本平均分: {summary['average_scores'].get('original', 0):.3f}")
|
||||
|
||||
# 显示目标文本的整体统计
|
||||
if "target_overall" in summary:
|
||||
overall = summary["target_overall"]
|
||||
print(f"\n📈 目标文本整体统计:")
|
||||
print("-" * 40)
|
||||
print(f"目标文本数量: {len(summary['target_rankings'])}")
|
||||
print(f"平均分的平均值: {overall['avg_of_averages']:.3f}")
|
||||
print(f"所有匹配中的最高分: {overall['overall_max']:.3f}")
|
||||
print(f"所有匹配中的最低分: {overall['overall_min']:.3f}")
|
||||
print(f"最佳匹配目标: {overall['best_target'][:50]}...")
|
||||
print(f"最差匹配目标: {overall['worst_target'][:50]}...")
|
||||
|
||||
# 显示目标文本排名
|
||||
if "target_rankings" in summary and summary["target_rankings"]:
|
||||
print(f"\n🏆 目标文本排名 (按平均分):")
|
||||
print("-" * 80)
|
||||
print(f"{'排名':<4} {'平均分':<8} {'最高分':<8} {'最低分':<8} {'标准差':<8} {'目标文本'}")
|
||||
print("-" * 80)
|
||||
|
||||
for i, target in enumerate(summary["target_rankings"]):
|
||||
target_text = target["target_text"][:40] + "..." if len(target["target_text"]) > 40 else target["target_text"]
|
||||
print(f"{i+1:<4} {target['average_score']:<8.3f} {target['max_score']:<8.3f} {target['min_score']:<8.3f} {target['std_score']:<8.3f} {target_text}")
|
||||
|
||||
# 显示每个目标文本的详细分数分布
|
||||
if "target_stats" in summary:
|
||||
print(f"\n📊 目标文本详细分数分布:")
|
||||
print("-" * 80)
|
||||
|
||||
for target_key, stats in summary["target_stats"].items():
|
||||
print(f"\n{target_key}: {stats['target_text']}")
|
||||
print(f" 平均分: {stats['average']:.3f}")
|
||||
print(f" 最高分: {stats['max']:.3f}")
|
||||
print(f" 最低分: {stats['min']:.3f}")
|
||||
print(f" 标准差: {stats['std']:.3f}")
|
||||
print(f" 所有分数: {[f'{s:.3f}' for s in stats['scores']]}")
|
||||
|
||||
# 显示最佳和最差兴趣描述的目标表现对比
|
||||
if summary["best_performer"] and summary["worst_performer"]:
|
||||
print(f"\n🔍 最佳 vs 最差兴趣描述对比:")
|
||||
print("-" * 80)
|
||||
|
||||
best_data = result["evaluations"][summary["best_performer"]["text_type"]]
|
||||
worst_data = result["evaluations"][summary["worst_performer"]["text_type"]]
|
||||
|
||||
print(f"最佳兴趣描述: {summary['best_performer']['text']}")
|
||||
print(f"最差兴趣描述: {summary['worst_performer']['text']}")
|
||||
print(f"")
|
||||
print(f"{'目标文本':<30} {'最佳分数':<10} {'最差分数':<10} {'差值'}")
|
||||
print("-" * 60)
|
||||
|
||||
for best_result, worst_result in zip(best_data["results"], worst_data["results"]):
|
||||
if best_result["target_text"] == worst_result["target_text"]:
|
||||
diff = best_result["final_score"] - worst_result["final_score"]
|
||||
target_text = best_result["target_text"][:27] + "..." if len(best_result["target_text"]) > 30 else best_result["target_text"]
|
||||
print(f"{target_text:<30} {best_result['final_score']:<10.3f} {worst_result['final_score']:<10.3f} {diff:+.3f}")
|
||||
|
||||
# 显示排名
|
||||
print(f"\n🏆 兴趣描述性能排名:")
|
||||
print("-" * 80)
|
||||
print(f"{'排名':<4} {'文本类型':<10} {'最高分':<8} {'平均分':<8} {'兴趣描述内容'}")
|
||||
print("-" * 80)
|
||||
|
||||
for i, item in enumerate(summary["rankings"]):
|
||||
text_content = item["text"][:40] + "..." if len(item["text"]) > 40 else item["text"]
|
||||
print(f"{i+1:<4} {item['text_type']:<10} {item['top_score']:<8.3f} {item['average_score']:<8.3f} {text_content}")
|
||||
|
||||
# 显示每个兴趣描述的详细结果
|
||||
print(f"\n🔍 详细结果:")
|
||||
print("-" * 80)
|
||||
|
||||
for text_type, data in result["evaluations"].items():
|
||||
print(f"\n--- {text_type} ---")
|
||||
print(f"兴趣描述: {data['text']}")
|
||||
print(f"最高分: {data['top_score']:.3f}")
|
||||
print(f"平均分: {data['average_score']:.3f}")
|
||||
|
||||
# 显示前3个匹配结果
|
||||
top_results = data["results"][:3]
|
||||
print(f"前3个匹配的目标文本:")
|
||||
for j, result_item in enumerate(top_results):
|
||||
print(f" {j+1}. 分数: {result_item['final_score']:.3f} - {result_item['target_text']}")
|
||||
|
||||
# 显示对比表格
|
||||
print(f"\n📈 兴趣描述对比表格:")
|
||||
print("-" * 100)
|
||||
header = f"{'兴趣描述':<20}"
|
||||
for i, target in enumerate(target_texts):
|
||||
target_name = f"目标{i+1}"
|
||||
header += f" {target_name:<12}"
|
||||
print(header)
|
||||
print("-" * 100)
|
||||
|
||||
# 原始文本行
|
||||
original_line = f"{'原始文本':<20}"
|
||||
original_data = result["evaluations"]["原始文本"]["results"]
|
||||
for i in range(len(target_texts)):
|
||||
if i < len(original_data):
|
||||
original_line += f" {original_data[i]['final_score']:<12.3f}"
|
||||
else:
|
||||
original_line += f" {'-':<12}"
|
||||
print(original_line)
|
||||
|
||||
# 近义句子行
|
||||
for i, paraphrase in enumerate(result["paraphrases"]):
|
||||
text_type = f"近义句子{i+1}"
|
||||
line = f"{text_type:<20}"
|
||||
paraphrase_data = result["evaluations"][text_type]["results"]
|
||||
for j in range(len(target_texts)):
|
||||
if j < len(paraphrase_data):
|
||||
line += f" {paraphrase_data[j]['final_score']:<12.3f}"
|
||||
else:
|
||||
line += f" {'-':<12}"
|
||||
print(line)
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数"""
|
||||
print("基于Embedding的兴趣度计算测试工具")
|
||||
print("1. 单个兴趣度测试")
|
||||
print("2. 近义句子兴趣度对比测试")
|
||||
|
||||
choice = input("\n请选择 (1/2): ").strip()
|
||||
|
||||
if choice == "1":
|
||||
asyncio.run(run_single_test())
|
||||
elif choice == "2":
|
||||
asyncio.run(run_paraphrase_test())
|
||||
else:
|
||||
print("无效选择")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -3,7 +3,6 @@ from typing import Optional, Dict
|
|||
from src.plugin_system.apis import message_api
|
||||
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
|
||||
from src.common.logger import get_logger
|
||||
from src.chat.frequency_control.talk_frequency_control import get_config_base_talk_frequency
|
||||
from src.chat.frequency_control.focus_value_control import get_config_base_focus_value
|
||||
|
||||
logger = get_logger("frequency_control")
|
||||
|
|
|
|||
|
|
@ -1,272 +0,0 @@
|
|||
from typing import Optional
|
||||
from datetime import datetime, timedelta
|
||||
import statistics
|
||||
from src.config.config import global_config
|
||||
from src.chat.frequency_control.utils import parse_stream_config_to_chat_id
|
||||
from src.common.database.database_model import Messages
|
||||
|
||||
|
||||
def get_config_base_talk_frequency(chat_id: Optional[str] = None) -> float:
|
||||
"""
|
||||
根据当前时间和聊天流获取对应的 talk_frequency
|
||||
|
||||
Args:
|
||||
chat_stream_id: 聊天流ID,格式为 "platform:chat_id:type"
|
||||
|
||||
Returns:
|
||||
float: 对应的频率值
|
||||
"""
|
||||
if not global_config.chat.talk_frequency_adjust:
|
||||
return global_config.chat.talk_frequency
|
||||
|
||||
# 优先检查聊天流特定的配置
|
||||
if chat_id:
|
||||
stream_frequency = get_stream_specific_frequency(chat_id)
|
||||
if stream_frequency is not None:
|
||||
return stream_frequency
|
||||
|
||||
# 检查全局时段配置(第一个元素为空字符串的配置)
|
||||
global_frequency = get_global_frequency()
|
||||
return global_config.chat.talk_frequency if global_frequency is None else global_frequency
|
||||
|
||||
|
||||
def get_time_based_frequency(time_freq_list: list[str]) -> Optional[float]:
|
||||
"""
|
||||
根据时间配置列表获取当前时段的频率
|
||||
|
||||
Args:
|
||||
time_freq_list: 时间频率配置列表,格式为 ["HH:MM,frequency", ...]
|
||||
|
||||
Returns:
|
||||
float: 频率值,如果没有配置则返回 None
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
current_time = datetime.now().strftime("%H:%M")
|
||||
current_hour, current_minute = map(int, current_time.split(":"))
|
||||
current_minutes = current_hour * 60 + current_minute
|
||||
|
||||
# 解析时间频率配置
|
||||
time_freq_pairs = []
|
||||
for time_freq_str in time_freq_list:
|
||||
try:
|
||||
time_str, freq_str = time_freq_str.split(",")
|
||||
hour, minute = map(int, time_str.split(":"))
|
||||
frequency = float(freq_str)
|
||||
minutes = hour * 60 + minute
|
||||
time_freq_pairs.append((minutes, frequency))
|
||||
except (ValueError, IndexError):
|
||||
continue
|
||||
|
||||
if not time_freq_pairs:
|
||||
return None
|
||||
|
||||
# 按时间排序
|
||||
time_freq_pairs.sort(key=lambda x: x[0])
|
||||
|
||||
# 查找当前时间对应的频率
|
||||
current_frequency = None
|
||||
for minutes, frequency in time_freq_pairs:
|
||||
if current_minutes >= minutes:
|
||||
current_frequency = frequency
|
||||
else:
|
||||
break
|
||||
|
||||
# 如果当前时间在所有配置时间之前,使用最后一个时间段的频率(跨天逻辑)
|
||||
if current_frequency is None and time_freq_pairs:
|
||||
current_frequency = time_freq_pairs[-1][1]
|
||||
|
||||
return current_frequency
|
||||
|
||||
|
||||
def get_stream_specific_frequency(chat_stream_id: str):
|
||||
"""
|
||||
获取特定聊天流在当前时间的频率
|
||||
|
||||
Args:
|
||||
chat_stream_id: 聊天流ID(哈希值)
|
||||
|
||||
Returns:
|
||||
float: 频率值,如果没有配置则返回 None
|
||||
"""
|
||||
# 查找匹配的聊天流配置
|
||||
for config_item in global_config.chat.talk_frequency_adjust:
|
||||
if not config_item or len(config_item) < 2:
|
||||
continue
|
||||
|
||||
stream_config_str = config_item[0] # 例如 "qq:1026294844:group"
|
||||
|
||||
# 解析配置字符串并生成对应的 chat_id
|
||||
config_chat_id = parse_stream_config_to_chat_id(stream_config_str)
|
||||
if config_chat_id is None:
|
||||
continue
|
||||
|
||||
# 比较生成的 chat_id
|
||||
if config_chat_id != chat_stream_id:
|
||||
continue
|
||||
|
||||
# 使用通用的时间频率解析方法
|
||||
return get_time_based_frequency(config_item[1:])
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_global_frequency() -> Optional[float]:
|
||||
"""
|
||||
获取全局默认频率配置
|
||||
|
||||
Returns:
|
||||
float: 频率值,如果没有配置则返回 None
|
||||
"""
|
||||
for config_item in global_config.chat.talk_frequency_adjust:
|
||||
if not config_item or len(config_item) < 2:
|
||||
continue
|
||||
|
||||
# 检查是否为全局默认配置(第一个元素为空字符串)
|
||||
if config_item[0] == "":
|
||||
return get_time_based_frequency(config_item[1:])
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_weekly_hourly_message_stats(chat_id: str):
|
||||
"""
|
||||
计算指定聊天最近一周每个小时的消息数量和用户数量
|
||||
|
||||
Args:
|
||||
chat_id: 聊天ID(对应 Messages 表的 chat_id 字段)
|
||||
|
||||
Returns:
|
||||
dict: 包含24个小时统计数据,格式为:
|
||||
{
|
||||
"0": {"message_count": [5, 8, 3, 12, 6, 9, 7], "message_std_dev": 2.1},
|
||||
"1": {"message_count": [10, 15, 8, 20, 12, 18, 14], "message_std_dev": 3.2},
|
||||
...
|
||||
}
|
||||
"""
|
||||
# 计算一周前的时间戳
|
||||
one_week_ago = datetime.now() - timedelta(days=7)
|
||||
one_week_ago_timestamp = one_week_ago.timestamp()
|
||||
|
||||
# 初始化数据结构:按小时存储每天的消息计数
|
||||
hourly_data = {}
|
||||
for hour in range(24):
|
||||
hourly_data[f"hour_{hour}"] = {"daily_counts": []}
|
||||
|
||||
try:
|
||||
# 查询指定聊天最近一周的消息
|
||||
messages = Messages.select().where(
|
||||
(Messages.time >= one_week_ago_timestamp) &
|
||||
(Messages.chat_id == chat_id)
|
||||
)
|
||||
|
||||
# 统计每个小时的数据
|
||||
for message in messages:
|
||||
# 将时间戳转换为datetime
|
||||
msg_time = datetime.fromtimestamp(message.time)
|
||||
hour = msg_time.hour
|
||||
|
||||
# 记录每天的消息计数(按日期分组)
|
||||
day_key = msg_time.strftime("%Y-%m-%d")
|
||||
hour_key = f"{hour}"
|
||||
|
||||
# 为该小时添加当天的消息计数
|
||||
found = False
|
||||
for day_count in hourly_data[hour_key]["daily_counts"]:
|
||||
if day_count["date"] == day_key:
|
||||
day_count["count"] += 1
|
||||
found = True
|
||||
break
|
||||
|
||||
if not found:
|
||||
hourly_data[hour_key]["daily_counts"].append({"date": day_key, "count": 1})
|
||||
|
||||
|
||||
except Exception as e:
|
||||
# 如果查询失败,返回空的统计结果
|
||||
print(f"Error getting weekly hourly message stats for chat {chat_id}: {e}")
|
||||
hourly_stats = {}
|
||||
for hour in range(24):
|
||||
hourly_stats[f"hour_{hour}"] = {
|
||||
"message_count": [],
|
||||
"message_std_dev": 0.0
|
||||
}
|
||||
return hourly_stats
|
||||
|
||||
# 计算每个小时的统计结果
|
||||
hourly_stats = {}
|
||||
for hour in range(24):
|
||||
hour_key = f"hour_{hour}"
|
||||
daily_counts = [day["count"] for day in hourly_data[hour_key]["daily_counts"]]
|
||||
|
||||
# 计算总消息数
|
||||
total_messages = sum(daily_counts)
|
||||
|
||||
# 计算标准差
|
||||
message_std_dev = 0.0
|
||||
if len(daily_counts) > 1:
|
||||
message_std_dev = statistics.stdev(daily_counts)
|
||||
elif len(daily_counts) == 1:
|
||||
message_std_dev = 0.0
|
||||
|
||||
# 按日期排序每日消息计数
|
||||
daily_counts_sorted = sorted(hourly_data[hour_key]["daily_counts"], key=lambda x: x["date"])
|
||||
|
||||
hourly_stats[hour_key] = {
|
||||
"message_count": [day["count"] for day in daily_counts_sorted],
|
||||
"message_std_dev": message_std_dev
|
||||
}
|
||||
|
||||
return hourly_stats
|
||||
|
||||
def get_recent_15min_stats(chat_id: str):
|
||||
"""
|
||||
获取最近15分钟指定聊天的消息数量和发言人数
|
||||
|
||||
Args:
|
||||
chat_id: 聊天ID(对应 Messages 表的 chat_id 字段)
|
||||
|
||||
Returns:
|
||||
dict: 包含消息数量和发言人数,格式为:
|
||||
{
|
||||
"message_count": 25,
|
||||
"user_count": 8,
|
||||
"time_range": "2025-01-01 14:30:00 - 2025-01-01 14:45:00"
|
||||
}
|
||||
"""
|
||||
# 计算15分钟前的时间戳
|
||||
fifteen_min_ago = datetime.now() - timedelta(minutes=15)
|
||||
fifteen_min_ago_timestamp = fifteen_min_ago.timestamp()
|
||||
current_time = datetime.now()
|
||||
|
||||
# 初始化统计结果
|
||||
message_count = 0
|
||||
user_set = set()
|
||||
|
||||
try:
|
||||
# 查询最近15分钟的消息
|
||||
messages = Messages.select().where(
|
||||
(Messages.time >= fifteen_min_ago_timestamp) &
|
||||
(Messages.chat_id == chat_id)
|
||||
)
|
||||
|
||||
# 统计消息数量和用户
|
||||
for message in messages:
|
||||
message_count += 1
|
||||
if message.user_id:
|
||||
user_set.add(message.user_id)
|
||||
|
||||
except Exception as e:
|
||||
# 如果查询失败,返回空结果
|
||||
print(f"Error getting recent 15min stats for chat {chat_id}: {e}")
|
||||
return {
|
||||
"message_count": 0,
|
||||
"user_count": 0,
|
||||
"time_range": f"{fifteen_min_ago.strftime('%Y-%m-%d %H:%M:%S')} - {current_time.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
}
|
||||
|
||||
return {
|
||||
"message_count": message_count,
|
||||
"user_count": len(user_set),
|
||||
"time_range": f"{fifteen_min_ago.strftime('%Y-%m-%d %H:%M:%S')} - {current_time.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
}
|
||||
|
|
@ -1,7 +1,6 @@
|
|||
import asyncio
|
||||
import time
|
||||
import traceback
|
||||
import math
|
||||
import random
|
||||
from typing import List, Optional, Dict, Any, Tuple, TYPE_CHECKING
|
||||
from rich.traceback import install
|
||||
|
|
@ -20,7 +19,7 @@ from src.chat.heart_flow.hfc_utils import CycleDetail
|
|||
from src.chat.heart_flow.hfc_utils import send_typing, stop_typing
|
||||
from src.chat.express.expression_learner import expression_learner_manager
|
||||
from src.person_info.person_info import Person
|
||||
from src.plugin_system.base.component_types import ChatMode, EventType, ActionInfo
|
||||
from src.plugin_system.base.component_types import EventType, ActionInfo
|
||||
from src.plugin_system.core import events_manager
|
||||
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
|
||||
from src.mais4u.mai_think import mai_thinking_manager
|
||||
|
|
@ -376,7 +375,7 @@ class HeartFChatting:
|
|||
action_success = False
|
||||
action_reply_text = ""
|
||||
|
||||
for i, result in enumerate(results):
|
||||
for result in results:
|
||||
if isinstance(result, BaseException):
|
||||
logger.error(f"{self.log_prefix} 动作执行异常: {result}")
|
||||
continue
|
||||
|
|
|
|||
|
|
@ -1,6 +1,5 @@
|
|||
import asyncio
|
||||
import re
|
||||
import math
|
||||
import traceback
|
||||
|
||||
from typing import Tuple, TYPE_CHECKING
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ from src.chat.message_receive.chat_stream import ChatStream
|
|||
from src.chat.message_receive.uni_message_sender import UniversalMessageSender
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.prompt_builder import global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import (
|
||||
build_readable_messages,
|
||||
get_raw_msg_before_timestamp_with_chat,
|
||||
|
|
|
|||
|
|
@ -1,35 +1,6 @@
|
|||
import traceback
|
||||
import time
|
||||
import asyncio
|
||||
import random
|
||||
import re
|
||||
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from datetime import datetime
|
||||
from src.mais4u.mai_think import mai_thinking_manager
|
||||
from src.common.logger import get_logger
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.data_models.info_data_model import ActionPlannerInfo
|
||||
from src.common.data_models.llm_data_model import LLMGenerationDataModel
|
||||
from src.config.config import global_config, model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.chat.message_receive.message import UserInfo, Seg, MessageRecv, MessageSending
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.message_receive.uni_message_sender import UniversalMessageSender
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import (
|
||||
build_readable_messages,
|
||||
get_raw_msg_before_timestamp_with_chat,
|
||||
replace_user_references,
|
||||
)
|
||||
from src.chat.express.expression_selector import expression_selector
|
||||
from src.chat.utils.prompt_builder import Prompt
|
||||
# from src.chat.memory_system.memory_activator import MemoryActivator
|
||||
from src.mood.mood_manager import mood_manager
|
||||
from src.person_info.person_info import Person, is_person_known
|
||||
from src.plugin_system.base.component_types import ActionInfo, EventType
|
||||
from src.plugin_system.apis import llm_api
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,35 +1,6 @@
|
|||
import traceback
|
||||
import time
|
||||
import asyncio
|
||||
import random
|
||||
import re
|
||||
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from datetime import datetime
|
||||
from src.mais4u.mai_think import mai_thinking_manager
|
||||
from src.common.logger import get_logger
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.data_models.info_data_model import ActionPlannerInfo
|
||||
from src.common.data_models.llm_data_model import LLMGenerationDataModel
|
||||
from src.config.config import global_config, model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.chat.message_receive.message import UserInfo, Seg, MessageRecv, MessageSending
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.message_receive.uni_message_sender import UniversalMessageSender
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import (
|
||||
build_readable_messages,
|
||||
get_raw_msg_before_timestamp_with_chat,
|
||||
replace_user_references,
|
||||
)
|
||||
from src.chat.express.expression_selector import expression_selector
|
||||
from src.chat.utils.prompt_builder import Prompt
|
||||
# from src.chat.memory_system.memory_activator import MemoryActivator
|
||||
from src.mood.mood_manager import mood_manager
|
||||
from src.person_info.person_info import Person, is_person_known
|
||||
from src.plugin_system.base.component_types import ActionInfo, EventType
|
||||
from src.plugin_system.apis import llm_api
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,35 +1,6 @@
|
|||
import traceback
|
||||
import time
|
||||
import asyncio
|
||||
import random
|
||||
import re
|
||||
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from datetime import datetime
|
||||
from src.mais4u.mai_think import mai_thinking_manager
|
||||
from src.common.logger import get_logger
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.data_models.info_data_model import ActionPlannerInfo
|
||||
from src.common.data_models.llm_data_model import LLMGenerationDataModel
|
||||
from src.config.config import global_config, model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.chat.message_receive.message import UserInfo, Seg, MessageRecv, MessageSending
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.message_receive.uni_message_sender import UniversalMessageSender
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import (
|
||||
build_readable_messages,
|
||||
get_raw_msg_before_timestamp_with_chat,
|
||||
replace_user_references,
|
||||
)
|
||||
from src.chat.express.expression_selector import expression_selector
|
||||
from src.chat.utils.prompt_builder import Prompt
|
||||
# from src.chat.memory_system.memory_activator import MemoryActivator
|
||||
from src.mood.mood_manager import mood_manager
|
||||
from src.person_info.person_info import Person, is_person_known
|
||||
from src.plugin_system.base.component_types import ActionInfo, EventType
|
||||
from src.plugin_system.apis import llm_api
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List, Tuple, Type
|
||||
|
||||
# 导入新插件系统
|
||||
from src.plugin_system import BasePlugin, register_plugin, ComponentInfo
|
||||
from src.plugin_system import BasePlugin, ComponentInfo
|
||||
from src.plugin_system.base.config_types import ConfigField
|
||||
|
||||
# 导入依赖的系统组件
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
[inner]
|
||||
version = "6.12.0"
|
||||
version = "6.13.0"
|
||||
|
||||
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
|
||||
#如果你想要修改配置文件,请递增version的值
|
||||
|
|
|
|||
Loading…
Reference in New Issue