Merge pull request #1264 from foxplaying/patch-2

Gemini:优化处理
pull/1266/head
UnCLAS-Prommer 2025-09-26 10:21:37 +08:00 committed by GitHub
commit 3a2685cf26
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 120 additions and 40 deletions

View File

@ -72,8 +72,8 @@ class BaseClient(ABC):
model_info: ModelInfo,
message_list: list[Message],
tool_options: list[ToolOption] | None = None,
max_tokens: int = 1024,
temperature: float = 0.7,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
response_format: RespFormat | None = None,
stream_response_handler: Optional[
Callable[[Any, asyncio.Event | None], tuple[APIResponse, tuple[int, int, int]]]
@ -117,6 +117,7 @@ class BaseClient(ABC):
self,
model_info: ModelInfo,
audio_base64: str,
max_tokens: Optional[int] = None,
extra_params: dict[str, Any] | None = None,
) -> APIResponse:
"""

View File

@ -182,7 +182,15 @@ def _process_delta(
if delta.text:
fc_delta_buffer.write(delta.text)
# 处理 thoughtGemini 的特殊字段)
for c in getattr(delta, "candidates", []):
if c.content and getattr(c.content, "parts", None):
for p in c.content.parts:
if getattr(p, "thought", False) and getattr(p, "text", None):
# 把 thought 写入 buffer避免 resp.content 永远为空
fc_delta_buffer.write(p.text)
if delta.function_calls: # 为什么不用hasattr呢是因为这个属性一定有即使是个空的
for call in delta.function_calls:
try:
@ -204,6 +212,7 @@ def _process_delta(
def _build_stream_api_resp(
_fc_delta_buffer: io.StringIO,
_tool_calls_buffer: list[tuple[str, str, dict]],
last_resp: GenerateContentResponse | None = None, # 传入 last_resp
) -> APIResponse:
# sourcery skip: simplify-len-comparison, use-assigned-variable
resp = APIResponse()
@ -228,6 +237,24 @@ def _build_stream_api_resp(
resp.tool_calls.append(ToolCall(call_id, function_name, arguments))
# 检查是否因为 max_tokens 截断
reason = None
if last_resp and getattr(last_resp, "candidates", None):
c0 = last_resp.candidates[0]
reason = getattr(c0, "finish_reason", None) or getattr(c0, "finishReason", None)
if str(reason).endswith("MAX_TOKENS"):
if resp.content and resp.content.strip():
logger.warning(
"⚠ Gemini 响应因达到 max_tokens 限制被部分截断,\n"
" 可能会对回复内容造成影响,建议修改模型 max_tokens 配置!"
)
else:
logger.warning(
"⚠ Gemini 响应因达到 max_tokens 限制被截断,\n"
" 请修改模型 max_tokens 配置!"
)
if not resp.content and not resp.tool_calls:
raise EmptyResponseException()
@ -246,12 +273,14 @@ async def _default_stream_response_handler(
_fc_delta_buffer = io.StringIO() # 正式内容缓冲区,用于存储接收到的正式内容
_tool_calls_buffer: list[tuple[str, str, dict]] = [] # 工具调用缓冲区,用于存储接收到的工具调用
_usage_record = None # 使用情况记录
last_resp: GenerateContentResponse | None = None # 保存最后一个 chunk
def _insure_buffer_closed():
if _fc_delta_buffer and not _fc_delta_buffer.closed:
_fc_delta_buffer.close()
async for chunk in resp_stream:
last_resp = chunk # 保存最后一个响应
# 检查是否有中断量
if interrupt_flag and interrupt_flag.is_set():
# 如果中断量被设置则抛出ReqAbortException
@ -270,10 +299,12 @@ async def _default_stream_response_handler(
(chunk.usage_metadata.candidates_token_count or 0) + (chunk.usage_metadata.thoughts_token_count or 0),
chunk.usage_metadata.total_token_count or 0,
)
try:
return _build_stream_api_resp(
_fc_delta_buffer,
_tool_calls_buffer,
last_resp=last_resp,
), _usage_record
except Exception:
# 确保缓冲区被关闭
@ -333,6 +364,38 @@ def _default_normal_response_parser(
api_response.raw_data = resp
# 检查是否因为 max_tokens 截断
try:
if resp.candidates:
c0 = resp.candidates[0]
reason = getattr(c0, "finish_reason", None) or getattr(c0, "finishReason", None)
if reason and "MAX_TOKENS" in str(reason):
# 检查第二个及之后的 parts 是否有内容
has_real_output = False
if getattr(c0, "content", None) and getattr(c0.content, "parts", None):
for p in c0.content.parts[1:]: # 跳过第一个 thought
if getattr(p, "text", None) and p.text.strip():
has_real_output = True
break
if not has_real_output and getattr(resp, "text", None):
has_real_output = True
if has_real_output:
logger.warning(
"⚠ Gemini 响应因达到 max_tokens 限制被部分截断,\n"
" 可能会对回复内容造成影响,建议修改模型 max_tokens 配置!"
)
else:
logger.warning(
"⚠ Gemini 响应因达到 max_tokens 限制被截断,\n"
" 请修改模型 max_tokens 配置!"
)
return api_response, _usage_record
except Exception as e:
logger.debug(f"检查 MAX_TOKENS 截断时异常: {e}")
# 最终的、唯一的空响应检查
if not api_response.content and not api_response.tool_calls:
raise EmptyResponseException("响应中既无文本内容也无工具调用")
@ -362,18 +425,29 @@ class GeminiClient(BaseClient):
http_options_kwargs["api_version"] = parts[1]
else:
http_options_kwargs["base_url"] = api_provider.base_url
http_options_kwargs["api_version"] = None
self.client = genai.Client(
http_options=HttpOptions(**http_options_kwargs),
api_key=api_provider.api_key,
) # 这里和openai不一样gemini会自己决定自己是否需要retry
@staticmethod
def clamp_thinking_budget(tb: int, model_id: str) -> int:
def clamp_thinking_budget(extra_params: dict[str, Any] | None, model_id: str) -> int:
"""
按模型限制思考预算范围仅支持指定的模型支持带数字后缀的新版本
"""
limits = None
# 参数传入处理
tb = THINKING_BUDGET_AUTO
if extra_params and "thinking_budget" in extra_params:
try:
tb = int(extra_params["thinking_budget"])
except (ValueError, TypeError):
logger.warning(
f"无效的 thinking_budget 值 {extra_params['thinking_budget']},将使用模型自动预算模式 {tb}"
)
# 优先尝试精确匹配
if model_id in THINKING_BUDGET_LIMITS:
limits = THINKING_BUDGET_LIMITS[model_id]
@ -416,8 +490,8 @@ class GeminiClient(BaseClient):
model_info: ModelInfo,
message_list: list[Message],
tool_options: list[ToolOption] | None = None,
max_tokens: int = 1024,
temperature: float = 0.4,
max_tokens: Optional[int] = 1024,
temperature: Optional[float] = 0.4,
response_format: RespFormat | None = None,
stream_response_handler: Optional[
Callable[
@ -456,19 +530,9 @@ class GeminiClient(BaseClient):
messages = _convert_messages(message_list)
# 将tool_options转换为Gemini API所需的格式
tools = _convert_tool_options(tool_options) if tool_options else None
tb = THINKING_BUDGET_AUTO
# 空处理
if extra_params and "thinking_budget" in extra_params:
try:
tb = int(extra_params["thinking_budget"])
except (ValueError, TypeError):
logger.warning(
f"无效的 thinking_budget 值 {extra_params['thinking_budget']},将使用模型自动预算模式 {tb}"
)
# 裁剪到模型支持的范围
tb = self.clamp_thinking_budget(tb, model_info.model_identifier)
# 解析并裁剪 thinking_budget
tb = self.clamp_thinking_budget(extra_params, model_info.model_identifier)
# 将response_format转换为Gemini API所需的格式
generation_config_dict = {
"max_output_tokens": max_tokens,
@ -526,15 +590,20 @@ class GeminiClient(BaseClient):
resp, usage_record = async_response_parser(req_task.result())
except (ClientError, ServerError) as e:
# 重封装ClientError和ServerError为RespNotOkException
# 重封装 ClientError ServerError RespNotOkException
raise RespNotOkException(e.code, e.message) from None
except (
UnknownFunctionCallArgumentError,
UnsupportedFunctionError,
FunctionInvocationError,
) as e:
raise ValueError(f"工具类型错误:请检查工具选项和参数:{str(e)}") from None
# 工具调用相关错误
raise RespParseException(None, f"工具调用参数错误: {str(e)}") from None
except EmptyResponseException as e:
# 保持原始异常,便于区分“空响应”和网络异常
raise e
except Exception as e:
# 其他未预料的错误,才归为网络连接类
raise NetworkConnectionError() from e
if usage_record:
@ -590,41 +659,51 @@ class GeminiClient(BaseClient):
return response
def get_audio_transcriptions(
self, model_info: ModelInfo, audio_base64: str, extra_params: dict[str, Any] | None = None
async def get_audio_transcriptions(
self,
model_info: ModelInfo,
audio_base64: str,
max_tokens: Optional[int] = 2048,
extra_params: dict[str, Any] | None = None,
) -> APIResponse:
"""
获取音频转录
:param model_info: 模型信息
:param audio_base64: 音频文件的Base64编码字符串
:param max_tokens: 最大输出token数默认2048
:param extra_params: 额外参数可选
:return: 转录响应
"""
# 解析并裁剪 thinking_budget
tb = self.clamp_thinking_budget(extra_params, model_info.model_identifier)
# 构造 prompt + 音频输入
prompt = "Generate a transcript of the speech. The language of the transcript should **match the language of the speech**."
contents = [
Content(
role="user",
parts=[
Part.from_text(text=prompt),
Part.from_bytes(data=base64.b64decode(audio_base64), mime_type="audio/wav"),
],
)
]
generation_config_dict = {
"max_output_tokens": 2048,
"max_output_tokens": max_tokens,
"response_modalities": ["TEXT"],
"thinking_config": ThinkingConfig(
include_thoughts=True,
thinking_budget=(
extra_params["thinking_budget"] if extra_params and "thinking_budget" in extra_params else 1024
),
thinking_budget=tb,
),
"safety_settings": gemini_safe_settings,
}
generate_content_config = GenerateContentConfig(**generation_config_dict)
prompt = "Generate a transcript of the speech. The language of the transcript should **match the language of the speech**."
try:
raw_response: GenerateContentResponse = self.client.models.generate_content(
raw_response: GenerateContentResponse = await self.client.aio.models.generate_content(
model=model_info.model_identifier,
contents=[
Content(
role="user",
parts=[
Part.from_text(text=prompt),
Part.from_bytes(data=base64.b64decode(audio_base64), mime_type="audio/wav"),
],
)
],
contents=contents,
config=generate_content_config,
)
resp, usage_record = _default_normal_response_parser(raw_response)

View File

@ -403,8 +403,8 @@ class OpenaiClient(BaseClient):
model_info: ModelInfo,
message_list: list[Message],
tool_options: list[ToolOption] | None = None,
max_tokens: int = 1024,
temperature: float = 0.7,
max_tokens: Optional[int] = 1024,
temperature: Optional[float] = 0.7,
response_format: RespFormat | None = None,
stream_response_handler: Optional[
Callable[