Merge branch 'MaiM-with-u:dev' into dev

pull/1346/head
infinitycat 2025-09-01 10:05:16 +08:00 committed by GitHub
commit 35d99e8b79
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
49 changed files with 1516 additions and 1076 deletions

View File

@ -64,6 +64,11 @@
> - QQ 机器人存在被限制风险,请自行了解,谨慎使用。
> - 由于程序处于开发中,可能消耗较多 token。
## 麦麦MC项目早期开发
[让麦麦玩MC](https://github.com/MaiM-with-u/Maicraft)
交流群1058573197
## 💬 讨论
**技术交流群:**

2
bot.py
View File

@ -66,7 +66,7 @@ async def graceful_shutdown(): # sourcery skip: use-named-expression
from src.plugin_system.core.events_manager import events_manager
from src.plugin_system.base.component_types import EventType
# 触发 ON_STOP 事件
_ = await events_manager.handle_mai_events(event_type=EventType.ON_STOP)
await events_manager.handle_mai_events(event_type=EventType.ON_STOP)
# 停止所有异步任务
await async_task_manager.stop_and_wait_all_tasks()

View File

@ -1,10 +1,24 @@
# Changelog
## [0.10.2] - 2025-8-31
### 🌟 主要功能更改
- 大幅优化了聊天逻辑,更易配置,动态控制
- 记忆系统重新启用,更好更优秀
- 更好的event系统
- 现在支持提及100%回复
### 细节功能更改
- 为空回复添加重试机制
- 修复tts插件可能的复读问题
## [0.10.1] - 2025-8-24
### 🌟 主要功能更改
- planner现在改为大小核结构移除激活阶段提高回复速度和动作调用精准度
- 优化关系的表现的效率
### 细节功能更改
- 优化识图的表现
- 为planner添加单独控制的提示词
- 修复激活值计算异常的BUG

View File

@ -11,7 +11,7 @@ from src.plugin_system import (
BaseEventHandler,
EventType,
MaiMessages,
ToolParamType
ToolParamType,
)
@ -136,12 +136,12 @@ class PrintMessage(BaseEventHandler):
handler_name = "print_message_handler"
handler_description = "打印接收到的消息"
async def execute(self, message: MaiMessages) -> Tuple[bool, bool, str | None]:
async def execute(self, message: MaiMessages | None) -> Tuple[bool, bool, str | None, None]:
"""执行打印消息事件处理"""
# 打印接收到的消息
if self.get_config("print_message.enabled", False):
print(f"接收到消息: {message.raw_message}")
return True, True, "消息已打印"
print(f"接收到消息: {message.raw_message if message else '无效消息'}")
return True, True, "消息已打印", None
# ===== 插件注册 =====

View File

@ -3,26 +3,7 @@ from src.config.config import global_config
from src.chat.frequency_control.utils import parse_stream_config_to_chat_id
class FocusValueControl:
def __init__(self, chat_id: str):
self.chat_id = chat_id
self.focus_value_adjust: float = 1
def get_current_focus_value(self) -> float:
return get_current_focus_value(self.chat_id) * self.focus_value_adjust
class FocusValueControlManager:
def __init__(self):
self.focus_value_controls: dict[str, FocusValueControl] = {}
def get_focus_value_control(self, chat_id: str) -> FocusValueControl:
if chat_id not in self.focus_value_controls:
self.focus_value_controls[chat_id] = FocusValueControl(chat_id)
return self.focus_value_controls[chat_id]
def get_current_focus_value(chat_id: Optional[str] = None) -> float:
def get_config_base_focus_value(chat_id: Optional[str] = None) -> float:
"""
根据当前时间和聊天流获取对应的 focus_value
"""
@ -139,5 +120,3 @@ def get_global_focus_value() -> Optional[float]:
return None
focus_value_control = FocusValueControlManager()

View File

@ -0,0 +1,477 @@
import time
from typing import Optional, Dict, List
from src.plugin_system.apis import message_api
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.common.logger import get_logger
from src.config.config import global_config
from src.chat.frequency_control.talk_frequency_control import get_config_base_talk_frequency
from src.chat.frequency_control.focus_value_control import get_config_base_focus_value
logger = get_logger("frequency_control")
class FrequencyControl:
"""
频率控制类可以根据最近时间段的发言数量和发言人数动态调整频率
特点
- 发言频率调整基于最近10分钟的数据评估单位为"消息数/10分钟"
- 专注度调整基于最近10分钟的数据评估单位为"消息数/10分钟"
- 历史基准值基于最近一周的数据按小时统计每小时都有独立的基准值需要至少50条历史消息
- 统一标准两个调整都使用10分钟窗口确保逻辑一致性和响应速度
- 双向调整根据活跃度高低既能提高也能降低频率和专注度
- 数据充足性检查当历史数据不足50条时不更新基准值当基准值为默认值时不进行动态调整
- 基准值更新直接使用新计算的周均值无平滑更新
"""
def __init__(self, chat_id: str):
self.chat_id = chat_id
self.chat_stream: ChatStream = get_chat_manager().get_stream(self.chat_id)
if not self.chat_stream:
raise ValueError(f"无法找到聊天流: {chat_id}")
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.chat_id) or self.chat_id}]"
# 发言频率调整值
self.talk_frequency_adjust: float = 1.0
self.talk_frequency_external_adjust: float = 1.0
# 专注度调整值
self.focus_value_adjust: float = 1.0
self.focus_value_external_adjust: float = 1.0
# 动态调整相关参数
self.last_update_time = time.time()
self.update_interval = 60 # 每60秒更新一次
# 历史数据缓存
self._message_count_cache = 0
self._user_count_cache = 0
self._last_cache_time = 0
self._cache_duration = 30 # 缓存30秒
# 调整参数
self.min_adjust = 0.3 # 最小调整值
self.max_adjust = 2.0 # 最大调整值
# 动态基准值(将根据历史数据计算)
self.base_message_count = 5 # 默认基准消息数量,将被动态更新
self.base_user_count = 3 # 默认基准用户数量,将被动态更新
# 平滑因子
self.smoothing_factor = 0.3
# 历史数据相关参数
self._last_historical_update = 0
self._historical_update_interval = 600 # 每十分钟更新一次历史基准值
self._historical_days = 7 # 使用最近7天的数据计算基准值
# 按小时统计的历史基准值
self._hourly_baseline = {
'messages': {}, # {0-23: 平均消息数}
'users': {} # {0-23: 平均用户数}
}
# 初始化24小时的默认基准值
for hour in range(24):
self._hourly_baseline['messages'][hour] = 0.0
self._hourly_baseline['users'][hour] = 0.0
def _update_historical_baseline(self):
"""
更新基于历史数据的基准值
使用最近一周的数据按小时统计平均消息数量和用户数量
"""
current_time = time.time()
# 检查是否需要更新历史基准值
if current_time - self._last_historical_update < self._historical_update_interval:
return
try:
# 计算一周前的时间戳
week_ago = current_time - (self._historical_days * 24 * 3600)
# 获取最近一周的消息数据
historical_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_stream.stream_id,
start_time=week_ago,
end_time=current_time,
filter_mai=True,
filter_command=True
)
if historical_messages and len(historical_messages) >= 50:
# 按小时统计消息数和用户数
hourly_stats = {hour: {'messages': [], 'users': set()} for hour in range(24)}
for msg in historical_messages:
# 获取消息的小时UTC时间
msg_time = time.localtime(msg.time)
msg_hour = msg_time.tm_hour
# 统计消息数
hourly_stats[msg_hour]['messages'].append(msg)
# 统计用户数
if msg.user_info and msg.user_info.user_id:
hourly_stats[msg_hour]['users'].add(msg.user_info.user_id)
# 计算每个小时的平均值(基于一周的数据)
for hour in range(24):
# 计算该小时的平均消息数(一周内该小时的总消息数 / 7天
total_messages = len(hourly_stats[hour]['messages'])
total_users = len(hourly_stats[hour]['users'])
# 只计算有消息的时段没有消息的时段设为0
if total_messages > 0:
avg_messages = total_messages / self._historical_days
avg_users = total_users / self._historical_days
self._hourly_baseline['messages'][hour] = avg_messages
self._hourly_baseline['users'][hour] = avg_users
else:
# 没有消息的时段设为0表示该时段不活跃
self._hourly_baseline['messages'][hour] = 0.0
self._hourly_baseline['users'][hour] = 0.0
# 更新整体基准值(用于兼容性)- 基于原始数据计算不受max(1.0)限制影响
overall_avg_messages = sum(len(hourly_stats[hour]['messages']) for hour in range(24)) / (24 * self._historical_days)
overall_avg_users = sum(len(hourly_stats[hour]['users']) for hour in range(24)) / (24 * self._historical_days)
self.base_message_count = overall_avg_messages
self.base_user_count = overall_avg_users
logger.info(
f"{self.log_prefix} 历史基准值更新完成: "
f"整体平均消息数={overall_avg_messages:.2f}, 整体平均用户数={overall_avg_users:.2f}"
)
# 记录几个关键时段的基准值
key_hours = [8, 12, 18, 22] # 早、中、晚、夜
for hour in key_hours:
# 计算该小时平均每10分钟的消息数和用户数
hourly_10min_messages = self._hourly_baseline['messages'][hour] / 6 # 1小时 = 6个10分钟
hourly_10min_users = self._hourly_baseline['users'][hour] / 6
logger.info(
f"{self.log_prefix} {hour}时基准值: "
f"消息数={self._hourly_baseline['messages'][hour]:.2f}/小时 "
f"({hourly_10min_messages:.2f}/10分钟), "
f"用户数={self._hourly_baseline['users'][hour]:.2f}/小时 "
f"({hourly_10min_users:.2f}/10分钟)"
)
elif historical_messages and len(historical_messages) < 50:
# 历史数据不足50条不更新基准值
logger.info(f"{self.log_prefix} 历史数据不足50条({len(historical_messages)}条),不更新基准值")
else:
# 如果没有历史数据,不更新基准值
logger.info(f"{self.log_prefix} 无历史数据,不更新基准值")
except Exception as e:
logger.error(f"{self.log_prefix} 更新历史基准值时出错: {e}")
# 出错时保持原有基准值不变
self._last_historical_update = current_time
def _get_current_hour_baseline(self) -> tuple[float, float]:
"""
获取当前小时的基准值
Returns:
tuple: (基准消息数, 基准用户数)
"""
current_hour = time.localtime().tm_hour
return (
self._hourly_baseline['messages'][current_hour],
self._hourly_baseline['users'][current_hour]
)
def get_dynamic_talk_frequency_adjust(self) -> float:
"""
获取纯动态调整值不包含配置文件基础值
Returns:
float: 动态调整值
"""
self._update_talk_frequency_adjust()
return self.talk_frequency_adjust
def get_dynamic_focus_value_adjust(self) -> float:
"""
获取纯动态调整值不包含配置文件基础值
Returns:
float: 动态调整值
"""
self._update_focus_value_adjust()
return self.focus_value_adjust
def _update_talk_frequency_adjust(self):
"""
更新发言频率调整值
适合人少话多的时候人少但消息多提高回复频率
"""
current_time = time.time()
# 检查是否需要更新
if current_time - self.last_update_time < self.update_interval:
return
# 先更新历史基准值
self._update_historical_baseline()
try:
# 获取最近10分钟的数据发言频率更敏感
recent_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_stream.stream_id,
start_time=current_time - 600, # 10分钟前
end_time=current_time,
filter_mai=True,
filter_command=True
)
# 计算消息数量和用户数量
message_count = len(recent_messages)
user_ids = set()
for msg in recent_messages:
if msg.user_info and msg.user_info.user_id:
user_ids.add(msg.user_info.user_id)
user_count = len(user_ids)
# 获取当前小时的基准值
current_hour_base_messages, current_hour_base_users = self._get_current_hour_baseline()
# 计算当前小时平均每10分钟的基准值
current_hour_10min_messages = current_hour_base_messages / 6 # 1小时 = 6个10分钟
current_hour_10min_users = current_hour_base_users / 6
# 发言频率调整逻辑:根据活跃度双向调整
# 检查是否有足够的数据进行分析
if user_count > 0 and message_count >= 2: # 至少需要2条消息才能进行有意义的分析
# 检查历史基准值是否有效(该时段有活跃度)
if current_hour_base_messages > 0.0 and current_hour_base_users > 0.0:
# 计算人均消息数10分钟窗口
messages_per_user = message_count / user_count
# 使用当前小时每10分钟的基准人均消息数
base_messages_per_user = current_hour_10min_messages / current_hour_10min_users if current_hour_10min_users > 0 else 1.0
# 双向调整逻辑
if messages_per_user > base_messages_per_user * 1.2:
# 活跃度很高:提高回复频率
target_talk_adjust = min(self.max_adjust, messages_per_user / base_messages_per_user)
elif messages_per_user < base_messages_per_user * 0.8:
# 活跃度很低:降低回复频率
target_talk_adjust = max(self.min_adjust, messages_per_user / base_messages_per_user)
else:
# 活跃度正常:保持正常
target_talk_adjust = 1.0
else:
# 历史基准值不足,不调整
target_talk_adjust = 1.0
else:
# 数据不足:不调整
target_talk_adjust = 1.0
# 限制调整范围
target_talk_adjust = max(self.min_adjust, min(self.max_adjust, target_talk_adjust))
# 平滑调整
self.talk_frequency_adjust = (
self.talk_frequency_adjust * (1 - self.smoothing_factor) +
target_talk_adjust * self.smoothing_factor
)
# 判断调整方向
if target_talk_adjust > 1.0:
adjust_direction = "提高"
elif target_talk_adjust < 1.0:
adjust_direction = "降低"
else:
if current_hour_base_messages <= 0.0 or current_hour_base_users <= 0.0:
adjust_direction = "不调整(该时段无活跃度)"
else:
adjust_direction = "保持"
logger.info(
f"{self.log_prefix} 发言频率调整: "
f"当前: {message_count}消息/{user_count}用户, 人均: {message_count/user_count if user_count > 0 else 0:.2f}消息/用户, "
f"基准: {current_hour_10min_messages:.2f}消息/{current_hour_10min_users:.2f}用户,人均:{current_hour_10min_messages/current_hour_10min_users if current_hour_10min_users > 0 else 0:.2f}消息/用户, "
f"调整: {adjust_direction}{target_talk_adjust:.2f}{self.talk_frequency_adjust:.2f}"
)
except Exception as e:
logger.error(f"{self.log_prefix} 更新发言频率调整值时出错: {e}")
def _update_focus_value_adjust(self):
"""
更新专注度调整值
适合人多话多的时候人多且消息多提高专注度LLM消耗更多但回复更精准
"""
current_time = time.time()
# 检查是否需要更新
if current_time - self.last_update_time < self.update_interval:
return
try:
# 获取最近10分钟的数据与发言频率保持一致
recent_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_stream.stream_id,
start_time=current_time - 600, # 10分钟前
end_time=current_time,
filter_mai=True,
filter_command=True
)
# 计算消息数量和用户数量
message_count = len(recent_messages)
user_ids = set()
for msg in recent_messages:
if msg.user_info and msg.user_info.user_id:
user_ids.add(msg.user_info.user_id)
user_count = len(user_ids)
# 获取当前小时的基准值
current_hour_base_messages, current_hour_base_users = self._get_current_hour_baseline()
# 计算当前小时平均每10分钟的基准值
current_hour_10min_messages = current_hour_base_messages / 6 # 1小时 = 6个10分钟
current_hour_10min_users = current_hour_base_users / 6
# 专注度调整逻辑:根据活跃度双向调整
# 检查是否有足够的数据进行分析
if user_count > 0 and current_hour_10min_users > 0 and message_count >= 2:
# 检查历史基准值是否有效(该时段有活跃度)
if current_hour_base_messages > 0.0 and current_hour_base_users > 0.0:
# 计算用户活跃度比率基于10分钟数据
user_ratio = user_count / current_hour_10min_users
# 计算消息活跃度比率基于10分钟数据
message_ratio = message_count / current_hour_10min_messages if current_hour_10min_messages > 0 else 1.0
# 双向调整逻辑
if user_ratio > 1.3 and message_ratio > 1.3:
# 活跃度很高提高专注度消耗更多LLM资源但回复更精准
target_focus_adjust = min(self.max_adjust, (user_ratio + message_ratio) / 2)
elif user_ratio > 1.1 and message_ratio > 1.1:
# 活跃度较高:适度提高专注度
target_focus_adjust = min(self.max_adjust, 1.0 + (user_ratio + message_ratio - 2.0) * 0.2)
elif user_ratio < 0.7 or message_ratio < 0.7:
# 活跃度很低降低专注度节省LLM资源
target_focus_adjust = max(self.min_adjust, min(user_ratio, message_ratio))
else:
# 正常情况:保持默认专注度
target_focus_adjust = 1.0
else:
# 历史基准值不足,不调整
target_focus_adjust = 1.0
else:
# 数据不足:不调整
target_focus_adjust = 1.0
# 限制调整范围
target_focus_adjust = max(self.min_adjust, min(self.max_adjust, target_focus_adjust))
# 平滑调整
self.focus_value_adjust = (
self.focus_value_adjust * (1 - self.smoothing_factor) +
target_focus_adjust * self.smoothing_factor
)
# 计算当前小时平均每10分钟的基准值
current_hour_10min_messages = current_hour_base_messages / 6 # 1小时 = 6个10分钟
current_hour_10min_users = current_hour_base_users / 6
# 判断调整方向
if target_focus_adjust > 1.0:
adjust_direction = "提高"
elif target_focus_adjust < 1.0:
adjust_direction = "降低"
else:
if current_hour_base_messages <= 0.0 or current_hour_base_users <= 0.0:
adjust_direction = "不调整(该时段无活跃度)"
else:
adjust_direction = "保持"
logger.info(
f"{self.log_prefix} 专注度调整(10分钟): "
f"当前: {message_count}消息/{user_count}用户,人均:{message_count/user_count if user_count > 0 else 0:.2f}消息/用户, "
f"基准: {current_hour_10min_messages:.2f}消息/{current_hour_10min_users:.2f}用户,人均:{current_hour_10min_messages/current_hour_10min_users if current_hour_10min_users > 0 else 0:.2f}消息/用户, "
f"比率: 用户{user_count/current_hour_10min_users if current_hour_10min_users > 0 else 0:.2f}x, 消息{message_count/current_hour_10min_messages if current_hour_10min_messages > 0 else 0:.2f}x, "
f"调整: {adjust_direction}{target_focus_adjust:.2f}{self.focus_value_adjust:.2f}"
)
except Exception as e:
logger.error(f"{self.log_prefix} 更新专注度调整值时出错: {e}")
def get_final_talk_frequency(self) -> float:
return get_config_base_talk_frequency(self.chat_stream.stream_id) * self.get_dynamic_talk_frequency_adjust() * self.talk_frequency_external_adjust
def get_final_focus_value(self) -> float:
return get_config_base_focus_value(self.chat_stream.stream_id) * self.get_dynamic_focus_value_adjust() * self.focus_value_external_adjust
def set_adjustment_parameters(
self,
min_adjust: Optional[float] = None,
max_adjust: Optional[float] = None,
base_message_count: Optional[int] = None,
base_user_count: Optional[int] = None,
smoothing_factor: Optional[float] = None,
update_interval: Optional[int] = None,
historical_update_interval: Optional[int] = None,
historical_days: Optional[int] = None
):
"""
设置调整参数
Args:
min_adjust: 最小调整值
max_adjust: 最大调整值
base_message_count: 基准消息数量
base_user_count: 基准用户数量
smoothing_factor: 平滑因子
update_interval: 更新间隔
"""
if min_adjust is not None:
self.min_adjust = max(0.1, min_adjust)
if max_adjust is not None:
self.max_adjust = max(1.0, max_adjust)
if base_message_count is not None:
self.base_message_count = max(1, base_message_count)
if base_user_count is not None:
self.base_user_count = max(1, base_user_count)
if smoothing_factor is not None:
self.smoothing_factor = max(0.0, min(1.0, smoothing_factor))
if update_interval is not None:
self.update_interval = max(10, update_interval)
if historical_update_interval is not None:
self._historical_update_interval = max(300, historical_update_interval) # 最少5分钟
if historical_days is not None:
self._historical_days = max(1, min(30, historical_days)) # 1-30天之间
class FrequencyControlManager:
"""
频率控制管理器管理多个聊天流的频率控制实例
"""
def __init__(self):
self.frequency_control_dict: Dict[str, FrequencyControl] = {}
def get_or_create_frequency_control(self, chat_id: str) -> FrequencyControl:
"""
获取或创建指定聊天流的频率控制实例
Args:
chat_id: 聊天流ID
Returns:
FrequencyControl: 频率控制实例
"""
if chat_id not in self.frequency_control_dict:
self.frequency_control_dict[chat_id] = FrequencyControl(chat_id)
return self.frequency_control_dict[chat_id]
# 创建全局实例
frequency_control_manager = FrequencyControlManager()

View File

@ -3,26 +3,7 @@ from src.config.config import global_config
from src.chat.frequency_control.utils import parse_stream_config_to_chat_id
class TalkFrequencyControl:
def __init__(self, chat_id: str):
self.chat_id = chat_id
self.talk_frequency_adjust: float = 1
def get_current_talk_frequency(self) -> float:
return get_current_talk_frequency(self.chat_id) * self.talk_frequency_adjust
class TalkFrequencyControlManager:
def __init__(self):
self.talk_frequency_controls = {}
def get_talk_frequency_control(self, chat_id: str) -> TalkFrequencyControl:
if chat_id not in self.talk_frequency_controls:
self.talk_frequency_controls[chat_id] = TalkFrequencyControl(chat_id)
return self.talk_frequency_controls[chat_id]
def get_current_talk_frequency(chat_id: Optional[str] = None) -> float:
def get_config_base_talk_frequency(chat_id: Optional[str] = None) -> float:
"""
根据当前时间和聊天流获取对应的 talk_frequency
@ -145,4 +126,3 @@ def get_global_frequency() -> Optional[float]:
return None
talk_frequency_control = TalkFrequencyControlManager()

View File

@ -18,8 +18,7 @@ from src.chat.planner_actions.action_modifier import ActionModifier
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.heart_flow.hfc_utils import CycleDetail
from src.chat.heart_flow.hfc_utils import send_typing, stop_typing
from src.chat.frequency_control.talk_frequency_control import talk_frequency_control
from src.chat.frequency_control.focus_value_control import focus_value_control
from src.chat.frequency_control.frequency_control import frequency_control_manager
from src.chat.express.expression_learner import expression_learner_manager
from src.person_info.person_info import Person
from src.plugin_system.base.component_types import ChatMode, EventType, ActionInfo
@ -85,8 +84,7 @@ class HeartFChatting:
self.expression_learner = expression_learner_manager.get_expression_learner(self.stream_id)
self.talk_frequency_control = talk_frequency_control.get_talk_frequency_control(self.stream_id)
self.focus_value_control = focus_value_control.get_focus_value_control(self.stream_id)
self.frequency_control = frequency_control_manager.get_or_create_frequency_control(self.stream_id)
self.action_manager = ActionManager()
self.action_planner = ActionPlanner(chat_id=self.stream_id, action_manager=self.action_manager)
@ -101,15 +99,8 @@ class HeartFChatting:
self._cycle_counter = 0
self._current_cycle_detail: CycleDetail = None # type: ignore
self.reply_timeout_count = 0
self.plan_timeout_count = 0
self.last_read_time = time.time() - 10
self.focus_energy = 1
self.no_action_consecutive = 0
# 最近三次no_action的新消息兴趣度记录
self.recent_interest_records: deque = deque(maxlen=3)
async def start(self):
"""检查是否需要启动主循环,如果未激活则启动。"""
@ -187,87 +178,14 @@ class HeartFChatting:
f"耗时: {self._current_cycle_detail.end_time - self._current_cycle_detail.start_time:.1f}秒, " # type: ignore
f"选择动作: {action_type}" + (f"\n详情: {'; '.join(timer_strings)}" if timer_strings else "")
)
def _determine_form_type(self) -> None:
"""判断使用哪种形式的no_action"""
# 如果连续no_action次数少于3次使用waiting形式
if self.no_action_consecutive <= 3:
self.focus_energy = 1
else:
# 计算最近三次记录的兴趣度总和
total_recent_interest = sum(self.recent_interest_records)
# 计算调整后的阈值
adjusted_threshold = 1 / self.talk_frequency_control.get_current_talk_frequency()
logger.info(
f"{self.log_prefix} 最近三次兴趣度总和: {total_recent_interest:.2f}, 调整后阈值: {adjusted_threshold:.2f}"
)
# 如果兴趣度总和小于阈值进入breaking形式
if total_recent_interest < adjusted_threshold:
logger.info(f"{self.log_prefix} 兴趣度不足,进入休息")
self.focus_energy = random.randint(3, 6)
else:
logger.info(f"{self.log_prefix} 兴趣度充足,等待新消息")
self.focus_energy = 1
async def _should_process_messages(self, new_message: List["DatabaseMessages"]) -> tuple[bool, float]:
"""
判断是否应该处理消息
Args:
new_message: 新消息列表
mode: 当前聊天模式
Returns:
bool: 是否应该处理消息
"""
new_message_count = len(new_message)
talk_frequency = self.talk_frequency_control.get_current_talk_frequency()
modified_exit_count_threshold = self.focus_energy * 0.5 / talk_frequency
modified_exit_interest_threshold = 1.5 / talk_frequency
async def caculate_interest_value(self, recent_messages_list: List["DatabaseMessages"]) -> float:
total_interest = 0.0
for msg in new_message:
for msg in recent_messages_list:
interest_value = msg.interest_value
if interest_value is not None and msg.processed_plain_text:
total_interest += float(interest_value)
if new_message_count >= modified_exit_count_threshold:
self.recent_interest_records.append(total_interest)
logger.info(
f"{self.log_prefix} 累计消息数量达到{new_message_count}条(>{modified_exit_count_threshold:.1f}),结束等待"
)
# logger.info(self.last_read_time)
# logger.info(new_message)
return True, total_interest / new_message_count if new_message_count > 0 else 0.0
# 检查累计兴趣值
if new_message_count > 0:
# 只在兴趣值变化时输出log
if not hasattr(self, "_last_accumulated_interest") or total_interest != self._last_accumulated_interest:
logger.info(
f"{self.log_prefix} 休息中,新消息:{new_message_count}条,累计兴趣值: {total_interest:.2f}, 活跃度: {talk_frequency:.1f}"
)
self._last_accumulated_interest = total_interest
if total_interest >= modified_exit_interest_threshold:
# 记录兴趣度到列表
self.recent_interest_records.append(total_interest)
logger.info(
f"{self.log_prefix} 累计兴趣值达到{total_interest:.2f}(>{modified_exit_interest_threshold:.1f}),结束等待"
)
return True, total_interest / new_message_count if new_message_count > 0 else 0.0
# 每10秒输出一次等待状态
if int(time.time() - self.last_read_time) > 0 and int(time.time() - self.last_read_time) % 15 == 0:
logger.debug(
f"{self.log_prefix} 已等待{time.time() - self.last_read_time:.0f}秒,累计{new_message_count}条消息,累计兴趣{total_interest:.1f},继续等待..."
)
await asyncio.sleep(0.5)
return False, 0.0
return total_interest / len(recent_messages_list)
async def _loopbody(self):
recent_messages_list = message_api.get_messages_by_time_in_chat(
@ -279,16 +197,13 @@ class HeartFChatting:
filter_mai=True,
filter_command=True,
)
# 统一的消息处理逻辑
should_process, interest_value = await self._should_process_messages(recent_messages_list)
if should_process:
if recent_messages_list:
self.last_read_time = time.time()
await self._observe(interest_value=interest_value)
await self._observe(interest_value=await self.caculate_interest_value(recent_messages_list),recent_messages_list=recent_messages_list)
else:
# Normal模式消息数量不足等待
await asyncio.sleep(0.5)
await asyncio.sleep(0.2)
return True
return True
@ -342,8 +257,7 @@ class HeartFChatting:
return loop_info, reply_text, cycle_timers
async def _observe(self, interest_value: float = 0.0) -> bool:
action_type = "no_action"
async def _observe(self, interest_value: float = 0.0,recent_messages_list: List["DatabaseMessages"] = []) -> bool:
reply_text = "" # 初始化reply_text变量避免UnboundLocalError
# 使用sigmoid函数将interest_value转换为概率
@ -362,22 +276,28 @@ class HeartFChatting:
normal_mode_probability = (
calculate_normal_mode_probability(interest_value)
* 2
* self.talk_frequency_control.get_current_talk_frequency()
* self.frequency_control.get_final_talk_frequency()
)
#对呼唤名字进行增幅
for msg in recent_messages_list:
if msg.reply_probability_boost is not None and msg.reply_probability_boost > 0.0:
normal_mode_probability += msg.reply_probability_boost
if global_config.chat.mentioned_bot_reply and msg.is_mentioned:
normal_mode_probability += global_config.chat.mentioned_bot_reply
if global_config.chat.at_bot_inevitable_reply and msg.is_at:
normal_mode_probability += global_config.chat.at_bot_inevitable_reply
# 根据概率决定使用哪种模式
# 根据概率决定使用直接回复
interest_triggerd = False
focus_triggerd = False
if random.random() < normal_mode_probability:
mode = ChatMode.NORMAL
interest_triggerd = True
logger.info(
f"{self.log_prefix} 有兴趣({interest_value:.2f}),在{normal_mode_probability * 100:.0f}%概率下选择回复"
f"{self.log_prefix}新消息,在{normal_mode_probability * 100:.0f}%概率下选择回复"
)
else:
mode = ChatMode.FOCUS
# 创建新的循环信息
cycle_timers, thinking_id = self.start_cycle()
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考")
if s4u_config.enable_s4u:
await send_typing()
@ -385,30 +305,28 @@ class HeartFChatting:
async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()):
await self.expression_learner.trigger_learning_for_chat()
# # 记忆构建为当前chat_id构建记忆
# try:
# await hippocampus_manager.build_memory_for_chat(self.stream_id)
# except Exception as e:
# logger.error(f"{self.log_prefix} 记忆构建失败: {e}")
available_actions: Dict[str, ActionInfo] = {}
if random.random() > self.focus_value_control.get_current_focus_value() and mode == ChatMode.FOCUS:
# 如果激活度没有激活并且聊天活跃度低有可能不进行plan相当于不在电脑前不进行认真思考
action_to_use_info = [
ActionPlannerInfo(
action_type="no_action",
reasoning="专注不足",
action_data={},
)
]
else:
#如果兴趣度不足以激活
if not interest_triggerd:
#看看专注值够不够
if random.random() < self.frequency_control.get_final_focus_value():
#专注值足够,仍然进入正式思考
focus_triggerd = True #都没触发,路边
# 任意一种触发都行
if interest_triggerd or focus_triggerd:
# 进入正式思考模式
cycle_timers, thinking_id = self.start_cycle()
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考")
# 第一步:动作检查
with Timer("动作检查", cycle_timers):
try:
await self.action_modifier.modify_actions()
available_actions = self.action_manager.get_using_actions()
except Exception as e:
logger.error(f"{self.log_prefix} 动作修改失败: {e}")
try:
await self.action_modifier.modify_actions()
available_actions = self.action_manager.get_using_actions()
except Exception as e:
logger.error(f"{self.log_prefix} 动作修改失败: {e}")
# 执行planner
is_group_chat, chat_target_info, _ = self.action_planner.get_necessary_info()
@ -439,103 +357,93 @@ class HeartFChatting:
):
return False
with Timer("规划器", cycle_timers):
# 根据不同触发进入不同plan
if focus_triggerd:
mode = ChatMode.FOCUS
else:
mode = ChatMode.NORMAL
action_to_use_info, _ = await self.action_planner.plan(
mode=mode,
loop_start_time=self.last_read_time,
available_actions=available_actions,
)
for action in action_to_use_info:
print(action.action_type)
# 3. 并行执行所有动作
action_tasks = [
asyncio.create_task(
self._execute_action(action, action_to_use_info, thinking_id, available_actions, cycle_timers)
)
for action in action_to_use_info
]
# 3. 并行执行所有动作
action_tasks = [
asyncio.create_task(
self._execute_action(action, action_to_use_info, thinking_id, available_actions, cycle_timers)
)
for action in action_to_use_info
]
# 并行执行所有任务
results = await asyncio.gather(*action_tasks, return_exceptions=True)
# 并行执行所有任务
results = await asyncio.gather(*action_tasks, return_exceptions=True)
# 处理执行结果
reply_loop_info = None
reply_text_from_reply = ""
action_success = False
action_reply_text = ""
action_command = ""
# 处理执行结果
reply_loop_info = None
reply_text_from_reply = ""
action_success = False
action_reply_text = ""
action_command = ""
for i, result in enumerate(results):
if isinstance(result, BaseException):
logger.error(f"{self.log_prefix} 动作执行异常: {result}")
continue
for i, result in enumerate(results):
if isinstance(result, BaseException):
logger.error(f"{self.log_prefix} 动作执行异常: {result}")
continue
_cur_action = action_to_use_info[i]
if result["action_type"] != "reply":
action_success = result["success"]
action_reply_text = result["reply_text"]
action_command = result.get("command", "")
elif result["action_type"] == "reply":
if result["success"]:
reply_loop_info = result["loop_info"]
reply_text_from_reply = result["reply_text"]
else:
logger.warning(f"{self.log_prefix} 回复动作执行失败")
_cur_action = action_to_use_info[i]
if result["action_type"] != "reply":
action_success = result["success"]
action_reply_text = result["reply_text"]
action_command = result.get("command", "")
elif result["action_type"] == "reply":
if result["success"]:
reply_loop_info = result["loop_info"]
reply_text_from_reply = result["reply_text"]
else:
logger.warning(f"{self.log_prefix} 回复动作执行失败")
# 构建最终的循环信息
if reply_loop_info:
# 如果有回复信息使用回复的loop_info作为基础
loop_info = reply_loop_info
# 更新动作执行信息
loop_info["loop_action_info"].update(
{
"action_taken": action_success,
"command": action_command,
"taken_time": time.time(),
# 构建最终的循环信息
if reply_loop_info:
# 如果有回复信息使用回复的loop_info作为基础
loop_info = reply_loop_info
# 更新动作执行信息
loop_info["loop_action_info"].update(
{
"action_taken": action_success,
"command": action_command,
"taken_time": time.time(),
}
)
reply_text = reply_text_from_reply
else:
# 没有回复信息构建纯动作的loop_info
loop_info = {
"loop_plan_info": {
"action_result": action_to_use_info,
},
"loop_action_info": {
"action_taken": action_success,
"reply_text": action_reply_text,
"command": action_command,
"taken_time": time.time(),
},
}
)
reply_text = reply_text_from_reply
else:
# 没有回复信息构建纯动作的loop_info
loop_info = {
"loop_plan_info": {
"action_result": action_to_use_info,
},
"loop_action_info": {
"action_taken": action_success,
"reply_text": action_reply_text,
"command": action_command,
"taken_time": time.time(),
},
}
reply_text = action_reply_text
reply_text = action_reply_text
self.end_cycle(loop_info, cycle_timers)
self.print_cycle_info(cycle_timers)
if s4u_config.enable_s4u:
await stop_typing()
await mai_thinking_manager.get_mai_think(self.stream_id).do_think_after_response(reply_text)
"""S4U内容暂时保留"""
if s4u_config.enable_s4u:
await stop_typing()
await mai_thinking_manager.get_mai_think(self.stream_id).do_think_after_response(reply_text)
"""S4U内容暂时保留"""
self.end_cycle(loop_info, cycle_timers)
self.print_cycle_info(cycle_timers)
# await self.willing_manager.after_generate_reply_handle(message_data.get("message_id", ""))
action_type = action_to_use_info[0].action_type if action_to_use_info else "no_action"
# 管理no_action计数器当执行了非no_action动作时重置计数器
if action_type != "no_action":
# no_action逻辑已集成到heartFC_chat.py中直接重置计数器
self.recent_interest_records.clear()
self.no_action_consecutive = 0
logger.debug(f"{self.log_prefix} 执行了{action_type}动作重置no_action计数器")
return True
if action_type == "no_action":
self.no_action_consecutive += 1
self._determine_form_type()
return True
async def _main_chat_loop(self):
"""主循环,持续进行计划并可能回复消息,直到被外部取消。"""
try:

View File

@ -32,10 +32,10 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, list[str]]:
Returns:
Tuple[float, bool, list[str]]: (兴趣度, 是否被提及, 关键词)
"""
if message.is_picid:
if message.is_picid or message.is_emoji:
return 0.0, []
is_mentioned, _ = is_mentioned_bot_in_message(message)
is_mentioned,is_at,reply_probability_boost = is_mentioned_bot_in_message(message)
interested_rate = 0.0
with Timer("记忆激活"):
@ -79,17 +79,13 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, list[str]]:
# 确保在范围内
base_interest = min(max(base_interest, 0.01), 0.3)
interested_rate += base_interest
if is_mentioned:
interest_increase_on_mention = 2
interested_rate += interest_increase_on_mention
message.interest_value = interested_rate
message.interest_value = base_interest
message.is_mentioned = is_mentioned
return interested_rate, keywords
message.is_at = is_at
message.reply_probability_boost = reply_probability_boost
return base_interest, keywords
class HeartFCMessageReceiver:

View File

@ -18,6 +18,7 @@ from src.config.config import global_config, model_config
from src.common.data_models.database_data_model import DatabaseMessages
from src.common.database.database_model import GraphNodes, GraphEdges # Peewee Models导入
from src.common.logger import get_logger
from src.chat.utils.utils import cut_key_words
from src.chat.utils.chat_message_builder import (
build_readable_messages,
get_raw_msg_by_timestamp_with_chat_inclusive,
@ -98,19 +99,23 @@ class MemoryGraph:
current_weight = self.G.nodes[concept].get("weight", 0.0)
self.G.nodes[concept]["weight"] = current_weight + 1.0
logger.debug(f"节点 {concept} 记忆整合成功,权重增加到 {current_weight + 1.0}")
logger.info(f"节点 {concept} 记忆内容已更新:{integrated_memory}")
except Exception as e:
logger.error(f"LLM整合记忆失败: {e}")
# 降级到简单连接
new_memory_str = f"{existing_memory} | {memory}"
self.G.nodes[concept]["memory_items"] = new_memory_str
logger.info(f"节点 {concept} 记忆内容已简单拼接并更新:{new_memory_str}")
else:
new_memory_str = str(memory)
self.G.nodes[concept]["memory_items"] = new_memory_str
logger.info(f"节点 {concept} 记忆内容已直接更新:{new_memory_str}")
else:
self.G.nodes[concept]["memory_items"] = str(memory)
# 如果节点存在但没有memory_items,说明是第一次添加memory,设置created_time
if "created_time" not in self.G.nodes[concept]:
self.G.nodes[concept]["created_time"] = current_time
logger.info(f"节点 {concept} 创建新记忆:{str(memory)}")
# 更新最后修改时间
self.G.nodes[concept]["last_modified"] = current_time
else:
@ -122,6 +127,7 @@ class MemoryGraph:
created_time=current_time, # 添加创建时间
last_modified=current_time,
) # 添加最后修改时间
logger.info(f"新节点 {concept} 已添加,记忆内容已写入:{str(memory)}")
def get_dot(self, concept):
# 检查节点是否存在于图中
@ -402,9 +408,7 @@ class Hippocampus:
text_length = len(text)
topic_num: int | list[int] = 0
words = jieba.cut(text)
keywords_lite = [word for word in words if len(word) > 1]
keywords_lite = list(set(keywords_lite))
keywords_lite = cut_key_words(text)
if keywords_lite:
logger.debug(f"提取关键词极简版: {keywords_lite}")
@ -1113,6 +1117,7 @@ class ParahippocampalGyrus:
# 4. 创建所有话题的摘要生成任务
tasks: List[Tuple[str, Coroutine[Any, Any, Tuple[str, Tuple[str, str, List | None]]]]] = []
topic_what_prompt: str = ""
for topic in filtered_topics:
# 调用修改后的 topic_what不再需要 time_info
topic_what_prompt = self.hippocampus.topic_what(input_text, topic)
@ -1159,6 +1164,131 @@ class ParahippocampalGyrus:
return compressed_memory, similar_topics_dict
def get_similar_topics_from_keywords(
self,
keywords: list[str] | str,
top_k: int = 3,
threshold: float = 0.7,
) -> dict[str, list[tuple[str, float]]]:
"""基于输入的关键词,返回每个关键词对应的相似主题列表。
Args:
keywords: 关键词列表或以逗号/空格/顿号分隔的字符串
top_k: 每个关键词返回的相似主题数量上限
threshold: 相似度阈值低于该值的主题将被过滤
Returns:
dict[str, list[tuple[str, float]]]: {keyword: [(topic, similarity), ...]}
"""
# 规范化输入为列表[str]
if isinstance(keywords, str):
# 支持中英文逗号、顿号、空格分隔
parts = (
keywords.replace("", ",").replace("", ",").replace(" ", ",").strip(", ")
)
keyword_list = [p.strip() for p in parts.split(",") if p.strip()]
else:
keyword_list = [k.strip() for k in keywords if isinstance(k, str) and k.strip()]
if not keyword_list:
return {}
existing_topics = list(self.memory_graph.G.nodes())
result: dict[str, list[tuple[str, float]]] = {}
for kw in keyword_list:
kw_words = set(jieba.cut(kw))
similar_topics: list[tuple[str, float]] = []
for topic in existing_topics:
topic_words = set(jieba.cut(topic))
all_words = kw_words | topic_words
if not all_words:
continue
v1 = [1 if w in kw_words else 0 for w in all_words]
v2 = [1 if w in topic_words else 0 for w in all_words]
sim = cosine_similarity(v1, v2)
if sim >= threshold:
similar_topics.append((topic, sim))
similar_topics.sort(key=lambda x: x[1], reverse=True)
result[kw] = similar_topics[:top_k]
return result
async def add_memory_with_similar(
self,
memory_item: str,
similar_topics_dict: dict[str, list[tuple[str, float]]],
) -> bool:
"""将单条记忆内容与相似主题写入记忆网络并同步数据库。
build_memory_for_chat 的方式 similar_topics_dict 的每个键作为主题添加节点内容
并与其相似主题建立连接连接强度为 int(similarity * 10)
Args:
memory_item: 记忆内容字符串将作为每个主题节点的 memory_items
similar_topics_dict: {topic: [(similar_topic, similarity), ...]}
Returns:
bool: 是否成功执行添加与同步
"""
try:
if not memory_item or not isinstance(memory_item, str):
return False
if not similar_topics_dict or not isinstance(similar_topics_dict, dict):
return False
current_time = time.time()
# 为每个主题写入节点
for topic, similar_list in similar_topics_dict.items():
if not topic or not isinstance(topic, str):
continue
await self.hippocampus.memory_graph.add_dot(topic, memory_item, self.hippocampus)
# 连接相似主题
if isinstance(similar_list, list):
for item in similar_list:
try:
similar_topic, similarity = item
except Exception:
continue
if not isinstance(similar_topic, str):
continue
if topic == similar_topic:
continue
# 强度按 build_memory_for_chat 的规则
strength = int(max(0.0, float(similarity)) * 10) if similarity is not None else 0
if strength <= 0:
continue
# 确保相似主题节点存在如果没有也可以只建立边networkx会创建节点但需初始化属性
if similar_topic not in self.memory_graph.G:
# 创建一个空的相似主题节点避免悬空边memory_items 为空字符串
self.memory_graph.G.add_node(
similar_topic,
memory_items="",
weight=1.0,
created_time=current_time,
last_modified=current_time,
)
self.memory_graph.G.add_edge(
topic,
similar_topic,
strength=strength,
created_time=current_time,
last_modified=current_time,
)
# 同步数据库
await self.hippocampus.entorhinal_cortex.sync_memory_to_db()
return True
except Exception as e:
logger.error(f"添加记忆节点失败: {e}")
return False
async def operation_forget_topic(self, percentage=0.005):
start_time = time.time()
logger.info("[遗忘] 开始检查数据库...")
@ -1325,7 +1455,6 @@ class HippocampusManager:
logger.info(f"""
--------------------------------
记忆系统参数配置:
构建频率: {global_config.memory.memory_build_frequency}|压缩率: {global_config.memory.memory_compress_rate}
遗忘间隔: {global_config.memory.forget_memory_interval}|遗忘比例: {global_config.memory.memory_forget_percentage}|遗忘: {global_config.memory.memory_forget_time}小时之后
记忆图统计信息: 节点数量: {node_count}, 连接数量: {edge_count}
--------------------------------""") # noqa: E501
@ -1343,61 +1472,6 @@ class HippocampusManager:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return await self._hippocampus.parahippocampal_gyrus.operation_forget_topic(percentage)
async def build_memory_for_chat(self, chat_id: str):
"""为指定chat_id构建记忆在heartFC_chat.py中调用"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
try:
# 检查是否需要构建记忆
logger.info(f"{chat_id} 构建记忆")
if memory_segment_manager.check_and_build_memory_for_chat(chat_id):
logger.info(f"{chat_id} 构建记忆,需要构建记忆")
messages = memory_segment_manager.get_messages_for_memory_build(chat_id, 50)
build_probability = 0.3 * global_config.memory.memory_build_frequency
if messages and random.random() < build_probability:
logger.info(f"{chat_id} 构建记忆,消息数量: {len(messages)}")
# 调用记忆压缩和构建
(
compressed_memory,
similar_topics_dict,
) = await self._hippocampus.parahippocampal_gyrus.memory_compress(
messages, global_config.memory.memory_compress_rate
)
# 添加记忆节点
current_time = time.time()
for topic, memory in compressed_memory:
await self._hippocampus.memory_graph.add_dot(topic, memory, self._hippocampus)
# 连接相似主题
if topic in similar_topics_dict:
similar_topics = similar_topics_dict[topic]
for similar_topic, similarity in similar_topics:
if topic != similar_topic:
strength = int(similarity * 10)
self._hippocampus.memory_graph.G.add_edge(
topic,
similar_topic,
strength=strength,
created_time=current_time,
last_modified=current_time,
)
# 同步到数据库
await self._hippocampus.entorhinal_cortex.sync_memory_to_db()
logger.info(f"{chat_id} 构建记忆完成")
return True
except Exception as e:
logger.error(f"{chat_id} 构建记忆失败: {e}")
return False
return False
async def get_memory_from_topic(
self, valid_keywords: list[str], max_memory_num: int = 3, max_memory_length: int = 2, max_depth: int = 3
) -> list:
@ -1441,89 +1515,3 @@ class HippocampusManager:
# 创建全局实例
hippocampus_manager = HippocampusManager()
# 在Hippocampus类中添加新的记忆构建管理器
class MemoryBuilder:
"""记忆构建器
为每个chat_id维护消息缓存和触发机制类似ExpressionLearner
"""
def __init__(self, chat_id: str):
self.chat_id = chat_id
self.last_update_time: float = time.time()
self.last_processed_time: float = 0.0
def should_trigger_memory_build(self) -> bool:
# sourcery skip: assign-if-exp, boolean-if-exp-identity, reintroduce-else
"""检查是否应该触发记忆构建"""
current_time = time.time()
# 检查时间间隔
time_diff = current_time - self.last_update_time
if time_diff < 600 / global_config.memory.memory_build_frequency:
return False
# 检查消息数量
recent_messages = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_update_time,
timestamp_end=current_time,
)
logger.info(f"最近消息数量: {len(recent_messages)},间隔时间: {time_diff}")
if not recent_messages or len(recent_messages) < 30 / global_config.memory.memory_build_frequency:
return False
return True
def get_messages_for_memory_build(self, threshold: int = 25) -> List[DatabaseMessages]:
"""获取用于记忆构建的消息"""
current_time = time.time()
messages = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_update_time,
timestamp_end=current_time,
limit=threshold,
)
if messages:
# 更新最后处理时间
self.last_processed_time = current_time
self.last_update_time = current_time
return messages or []
class MemorySegmentManager:
"""记忆段管理器
管理所有chat_id的MemoryBuilder实例自动检查和触发记忆构建
"""
def __init__(self):
self.builders: Dict[str, MemoryBuilder] = {}
def get_or_create_builder(self, chat_id: str) -> MemoryBuilder:
"""获取或创建指定chat_id的MemoryBuilder"""
if chat_id not in self.builders:
self.builders[chat_id] = MemoryBuilder(chat_id)
return self.builders[chat_id]
def check_and_build_memory_for_chat(self, chat_id: str) -> bool:
"""检查指定chat_id是否需要构建记忆如果需要则返回True"""
builder = self.get_or_create_builder(chat_id)
return builder.should_trigger_memory_build()
def get_messages_for_memory_build(self, chat_id: str, threshold: int = 25) -> List[DatabaseMessages]:
"""获取指定chat_id用于记忆构建的消息"""
if chat_id not in self.builders:
return []
return self.builders[chat_id].get_messages_for_memory_build(threshold)
# 创建全局实例
memory_segment_manager = MemorySegmentManager()

View File

@ -1,254 +0,0 @@
# -*- coding: utf-8 -*-
import time
import re
import json
import ast
import traceback
from json_repair import repair_json
from datetime import datetime, timedelta
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from src.common.database.database_model import Memory # Peewee Models导入
from src.config.config import model_config, global_config
logger = get_logger(__name__)
class MemoryItem:
def __init__(self, memory_id: str, chat_id: str, memory_text: str, keywords: list[str]):
self.memory_id = memory_id
self.chat_id = chat_id
self.memory_text: str = memory_text
self.keywords: list[str] = keywords
self.create_time: float = time.time()
self.last_view_time: float = time.time()
class MemoryManager:
def __init__(self):
# self.memory_items:list[MemoryItem] = []
pass
class InstantMemory:
def __init__(self, chat_id):
self.chat_id = chat_id
self.last_view_time = time.time()
self.summary_model = LLMRequest(
model_set=model_config.model_task_config.utils,
request_type="memory.summary",
)
async def if_need_build(self, text: str):
prompt = f"""
请判断以下内容中是否有值得记忆的信息如果有请输出1否则输出0
{text}
请只输出1或0就好
"""
try:
response, _ = await self.summary_model.generate_response_async(prompt, temperature=0.5)
if global_config.debug.show_prompt:
print(prompt)
print(response)
return "1" in response
except Exception as e:
logger.error(f"判断是否需要记忆出现错误:{str(e)} {traceback.format_exc()}")
return False
async def build_memory(self, text):
prompt = f"""
以下内容中存在值得记忆的信息请你从中总结出一段值得记忆的信息并输出
{text}
请以json格式输出一段概括的记忆内容和关键词
{{
"memory_text": "记忆内容",
"keywords": "关键词,用/划分"
}}
"""
try:
response, _ = await self.summary_model.generate_response_async(prompt, temperature=0.5)
# print(prompt)
# print(response)
if not response:
return None
try:
repaired = repair_json(response)
result = json.loads(repaired)
memory_text = result.get("memory_text", "")
keywords = result.get("keywords", "")
if isinstance(keywords, str):
keywords_list = [k.strip() for k in keywords.split("/") if k.strip()]
elif isinstance(keywords, list):
keywords_list = keywords
else:
keywords_list = []
return {"memory_text": memory_text, "keywords": keywords_list}
except Exception as parse_e:
logger.error(f"解析记忆json失败{str(parse_e)} {traceback.format_exc()}")
return None
except Exception as e:
logger.error(f"构建记忆出现错误:{str(e)} {traceback.format_exc()}")
return None
async def create_and_store_memory(self, text: str):
if_need = await self.if_need_build(text)
if if_need:
logger.info(f"需要记忆:{text}")
memory = await self.build_memory(text)
if memory and memory.get("memory_text"):
memory_id = f"{self.chat_id}_{time.time()}"
memory_item = MemoryItem(
memory_id=memory_id,
chat_id=self.chat_id,
memory_text=memory["memory_text"],
keywords=memory.get("keywords", []),
)
await self.store_memory(memory_item)
else:
logger.info(f"不需要记忆:{text}")
async def store_memory(self, memory_item: MemoryItem):
memory = Memory(
memory_id=memory_item.memory_id,
chat_id=memory_item.chat_id,
memory_text=memory_item.memory_text,
keywords=memory_item.keywords,
create_time=memory_item.create_time,
last_view_time=memory_item.last_view_time,
)
memory.save()
async def get_memory(self, target: str):
from json_repair import repair_json
prompt = f"""
请根据以下发言内容判断是否需要提取记忆
{target}
请用json格式输出包含以下字段
其中time的要求是
可以选择具体日期时间格式为YYYY-MM-DD HH:MM:SS或者大致时间格式为YYYY-MM-DD
可以选择相对时间例如今天昨天前天5天前1个月前
可以选择留空进行模糊搜索
{{
"need_memory": 1,
"keywords": "希望获取的记忆关键词,用/划分",
"time": "希望获取的记忆大致时间"
}}
请只输出json格式不要输出其他多余内容
"""
try:
response, _ = await self.summary_model.generate_response_async(prompt, temperature=0.5)
if global_config.debug.show_prompt:
print(prompt)
print(response)
if not response:
return None
try:
repaired = repair_json(response)
result = json.loads(repaired)
# 解析keywords
keywords = result.get("keywords", "")
if isinstance(keywords, str):
keywords_list = [k.strip() for k in keywords.split("/") if k.strip()]
elif isinstance(keywords, list):
keywords_list = keywords
else:
keywords_list = []
# 解析time为时间段
time_str = result.get("time", "").strip()
start_time, end_time = self._parse_time_range(time_str)
logger.info(f"start_time: {start_time}, end_time: {end_time}")
# 检索包含关键词的记忆
memories_set = set()
if start_time and end_time:
start_ts = start_time.timestamp()
end_ts = end_time.timestamp()
query = Memory.select().where(
(Memory.chat_id == self.chat_id)
& (Memory.create_time >= start_ts) # type: ignore
& (Memory.create_time < end_ts) # type: ignore
)
else:
query = Memory.select().where(Memory.chat_id == self.chat_id)
for mem in query:
# 对每条记忆
mem_keywords = mem.keywords or ""
parsed = ast.literal_eval(mem_keywords)
if isinstance(parsed, list):
mem_keywords = [str(k).strip() for k in parsed if str(k).strip()]
else:
mem_keywords = []
# logger.info(f"mem_keywords: {mem_keywords}")
# logger.info(f"keywords_list: {keywords_list}")
for kw in keywords_list:
# logger.info(f"kw: {kw}")
# logger.info(f"kw in mem_keywords: {kw in mem_keywords}")
if kw in mem_keywords:
# logger.info(f"mem.memory_text: {mem.memory_text}")
memories_set.add(mem.memory_text)
break
return list(memories_set)
except Exception as parse_e:
logger.error(f"解析记忆json失败{str(parse_e)} {traceback.format_exc()}")
return None
except Exception as e:
logger.error(f"获取记忆出现错误:{str(e)} {traceback.format_exc()}")
return None
def _parse_time_range(self, time_str):
# sourcery skip: extract-duplicate-method, use-contextlib-suppress
"""
支持解析如下格式
- 具体日期时间YYYY-MM-DD HH:MM:SS
- 具体日期YYYY-MM-DD
- 相对时间今天昨天前天N天前N个月前
- 空字符串返回(None, None)
"""
now = datetime.now()
if not time_str:
return 0, now
time_str = time_str.strip()
# 具体日期时间
try:
dt = datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
return dt, dt + timedelta(hours=1)
except Exception:
pass
# 具体日期
try:
dt = datetime.strptime(time_str, "%Y-%m-%d")
return dt, dt + timedelta(days=1)
except Exception:
pass
# 相对时间
if time_str == "今天":
start = now.replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if time_str == "昨天":
start = (now - timedelta(days=1)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if time_str == "前天":
start = (now - timedelta(days=2)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if m := re.match(r"(\d+)天前", time_str):
days = int(m.group(1))
start = (now - timedelta(days=days)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if m := re.match(r"(\d+)个月前", time_str):
months = int(m.group(1))
# 近似每月30天
start = (now - timedelta(days=months * 30)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
# 其他无法解析
return 0, now

View File

@ -84,7 +84,7 @@ class Message(MessageBase):
return await self._process_single_segment(segment) # type: ignore
@abstractmethod
async def _process_single_segment(self, segment):
async def _process_single_segment(self, segment) -> str:
pass
@ -108,6 +108,8 @@ class MessageRecv(Message):
self.has_picid = False
self.is_voice = False
self.is_mentioned = None
self.is_at = False
self.reply_probability_boost = 0.0
self.is_notify = False
self.is_command = False
@ -353,44 +355,44 @@ class MessageProcessBase(Message):
self.thinking_time = round(time.time() - self.thinking_start_time, 2)
return self.thinking_time
async def _process_single_segment(self, seg: Seg) -> str | None:
async def _process_single_segment(self, segment: Seg) -> str:
"""处理单个消息段
Args:
seg: 要处理的消息段
segment: 要处理的消息段
Returns:
str: 处理后的文本
"""
try:
if seg.type == "text":
return seg.data # type: ignore
elif seg.type == "image":
if segment.type == "text":
return segment.data # type: ignore
elif segment.type == "image":
# 如果是base64图片数据
if isinstance(seg.data, str):
return await get_image_manager().get_image_description(seg.data)
if isinstance(segment.data, str):
return await get_image_manager().get_image_description(segment.data)
return "[图片,网卡了加载不出来]"
elif seg.type == "emoji":
if isinstance(seg.data, str):
return await get_image_manager().get_emoji_tag(seg.data)
elif segment.type == "emoji":
if isinstance(segment.data, str):
return await get_image_manager().get_emoji_tag(segment.data)
return "[表情,网卡了加载不出来]"
elif seg.type == "voice":
if isinstance(seg.data, str):
return await get_voice_text(seg.data)
elif segment.type == "voice":
if isinstance(segment.data, str):
return await get_voice_text(segment.data)
return "[发了一段语音,网卡了加载不出来]"
elif seg.type == "at":
return f"[@{seg.data}]"
elif seg.type == "reply":
elif segment.type == "at":
return f"[@{segment.data}]"
elif segment.type == "reply":
if self.reply and hasattr(self.reply, "processed_plain_text"):
# print(f"self.reply.processed_plain_text: {self.reply.processed_plain_text}")
# print(f"reply: {self.reply}")
return f"[回复<{self.reply.message_info.user_info.user_nickname}:{self.reply.message_info.user_info.user_id}> 的消息:{self.reply.processed_plain_text}]" # type: ignore
return None
return ""
else:
return f"[{seg.type}:{str(seg.data)}]"
return f"[{segment.type}:{str(segment.data)}]"
except Exception as e:
logger.error(f"处理消息段失败: {str(e)}, 类型: {seg.type}, 数据: {seg.data}")
return f"[处理失败的{seg.type}消息]"
logger.error(f"处理消息段失败: {str(e)}, 类型: {segment.type}, 数据: {segment.data}")
return f"[处理失败的{segment.type}消息]"
def _generate_detailed_text(self) -> str:
"""生成详细文本,包含时间和用户信息"""

View File

@ -56,6 +56,8 @@ class MessageStorage:
filtered_display_message = ""
interest_value = 0
is_mentioned = False
is_at = False
reply_probability_boost = 0.0
reply_to = message.reply_to
priority_mode = ""
priority_info = {}
@ -70,6 +72,8 @@ class MessageStorage:
filtered_display_message = ""
interest_value = message.interest_value
is_mentioned = message.is_mentioned
is_at = message.is_at
reply_probability_boost = message.reply_probability_boost
reply_to = ""
priority_mode = message.priority_mode
priority_info = message.priority_info
@ -100,6 +104,8 @@ class MessageStorage:
# Flattened chat_info
reply_to=reply_to,
is_mentioned=is_mentioned,
is_at=is_at,
reply_probability_boost=reply_probability_boost,
chat_info_stream_id=chat_info_dict.get("stream_id"),
chat_info_platform=chat_info_dict.get("platform"),
chat_info_user_platform=user_info_from_chat.get("platform"),

View File

@ -84,7 +84,7 @@ class ActionManager:
log_prefix=log_prefix,
shutting_down=shutting_down,
plugin_config=plugin_config,
action_message=action_message.flatten() if action_message else None,
action_message=action_message,
)
logger.debug(f"创建Action实例成功: {action_name}")

View File

@ -65,7 +65,6 @@ def init_prompt():
动作描述参与聊天回复发送文本进行表达
- 你想要闲聊或者随便附和
- 有人提到了你但是你还没有回应
- {mentioned_bonus}
- 如果你刚刚进行了回复不要对同一个话题重复回应
{{
"action": "reply",
@ -93,7 +92,6 @@ def init_prompt():
现在最新的聊天消息引起了你的兴趣你想要对其中的消息进行回复回复标准如下
- 你想要闲聊或者随便附和
- 有人提到了你但是你还没有回应
- {mentioned_bonus}
- 如果你刚刚进行了回复不要对同一个话题重复回应
你之前的动作记录
@ -465,7 +463,7 @@ class ActionPlanner:
)
)
logger.info(f"{self.log_prefix}副规划器返回了{len(action_planner_infos)}个action")
logger.debug(f"{self.log_prefix}副规划器返回了{len(action_planner_infos)}个action")
return action_planner_infos
async def plan(
@ -510,7 +508,7 @@ class ActionPlanner:
)
self.last_obs_time_mark = time.time()
all_sub_planner_results: List[ActionPlannerInfo] = [] # 防止Unbound
try:
sub_planner_actions: Dict[str, ActionInfo] = {}
@ -553,7 +551,7 @@ class ActionPlanner:
for i, (action_name, action_info) in enumerate(action_items):
sub_planner_lists[i % sub_planner_num].append((action_name, action_info))
logger.info(
logger.debug(
f"{self.log_prefix}成功将{sub_planner_actions_num}个actions分配到{sub_planner_num}个子列表中"
)
for i, action_list in enumerate(sub_planner_lists):
@ -581,11 +579,10 @@ class ActionPlanner:
sub_plan_results = await asyncio.gather(*sub_plan_tasks)
# 收集所有结果
all_sub_planner_results: List[ActionPlannerInfo] = []
for sub_result in sub_plan_results:
all_sub_planner_results.extend(sub_result)
logger.info(f"{self.log_prefix}所有副规划器共返回了{len(all_sub_planner_results)}个action")
logger.info(f"{self.log_prefix}小脑决定执行{len(all_sub_planner_results)}个动作")
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt, message_id_list = await self.build_planner_prompt(
@ -726,9 +723,7 @@ class ActionPlanner:
action_str = ""
for action_planner_info in actions:
action_str += f"{action_planner_info.action_type} "
logger.info(
f"{self.log_prefix}大脑小脑决定执行{len(actions)}个动作: {action_str}"
)
logger.info(f"{self.log_prefix}大脑小脑决定执行{len(actions)}个动作: {action_str}")
else:
# 如果为假,只返回副规划器的结果
actions = self._filter_no_actions(all_sub_planner_results)
@ -777,12 +772,6 @@ class ActionPlanner:
else:
actions_before_now_block = ""
mentioned_bonus = ""
if global_config.chat.mentioned_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你"
if global_config.chat.at_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你或者at你"
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None
if not is_group_chat and chat_target_info:
@ -838,7 +827,6 @@ class ActionPlanner:
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
mentioned_bonus=mentioned_bonus,
# action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,
name_block=name_block,
@ -850,7 +838,6 @@ class ActionPlanner:
time_block=time_block,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
mentioned_bonus=mentioned_bonus,
moderation_prompt=moderation_prompt_block,
name_block=name_block,
actions_before_now_block=actions_before_now_block,

View File

@ -26,7 +26,6 @@ from src.chat.utils.chat_message_builder import (
)
from src.chat.express.expression_selector import expression_selector
from src.chat.memory_system.memory_activator import MemoryActivator
from src.chat.memory_system.instant_memory import InstantMemory
from src.mood.mood_manager import mood_manager
from src.person_info.person_info import Person, is_person_known
from src.plugin_system.base.component_types import ActionInfo, EventType
@ -147,7 +146,6 @@ class DefaultReplyer:
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_stream.stream_id)
self.heart_fc_sender = HeartFCSender()
self.memory_activator = MemoryActivator()
self.instant_memory = InstantMemory(chat_id=self.chat_stream.stream_id)
from src.plugin_system.core.tool_use import ToolExecutor # 延迟导入ToolExecutor不然会循环依赖
@ -375,20 +373,11 @@ class DefaultReplyer:
instant_memory = None
# running_memories = await self.memory_activator.activate_memory_with_chat_history(
# target_message=target, chat_history=chat_history
# )
running_memories = await self.memory_activator.activate_memory_with_chat_history(
target_message=target, chat_history=chat_history
)
running_memories = None
if global_config.memory.enable_instant_memory:
chat_history_str = build_readable_messages(
messages=chat_history, replace_bot_name=True, timestamp_mode="normal"
)
asyncio.create_task(self.instant_memory.create_and_store_memory(chat_history_str))
instant_memory = await self.instant_memory.get_memory(target)
logger.info(f"即时记忆:{instant_memory}")
if not running_memories:
return ""
@ -662,9 +651,11 @@ class DefaultReplyer:
action_name = action_plan_info.action_type
if action_name == "reply":
continue
action_description: str = "无描述"
reasoning: str = "无原因"
if action := available_actions.get(action_name):
action_description = action.description or "无描述"
reasoning = action_plan_info.reasoning or "无原因"
action_description = action.description or action_description
reasoning = action_plan_info.reasoning or reasoning
chosen_action_descriptions += f"- {action_name}: {action_description},原因:{reasoning}\n"
@ -716,22 +707,22 @@ class DefaultReplyer:
is_group_chat = bool(chat_stream.group_info)
platform = chat_stream.platform
user_id = "用户ID"
person_name = "用户"
sender = "用户"
target = "消息"
if reply_message:
user_id = reply_message.user_info.user_id
person = Person(platform=platform, user_id=user_id)
person_name = person.person_name or user_id
sender = person_name
target = reply_message.processed_plain_text
else:
person_name = "用户"
sender = "用户"
target = "消息"
mood_prompt: str = ""
if global_config.mood.enable_mood:
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
mood_prompt = chat_mood.mood_state
else:
mood_prompt = ""
target = replace_user_references(target, chat_stream.platform, replace_bot_name=True)
@ -950,9 +941,7 @@ class DefaultReplyer:
else:
chat_target_name = "对方"
if self.chat_target_info:
chat_target_name = (
self.chat_target_info.person_name or self.chat_target_info.user_nickname or "对方"
)
chat_target_name = self.chat_target_info.person_name or self.chat_target_info.user_nickname or "对方"
chat_target_1 = await global_prompt_manager.format_prompt(
"chat_target_private1", sender_name=chat_target_name
)

View File

@ -203,18 +203,21 @@ def get_actions_by_timestamp_with_chat(
query = query.order_by(ActionRecords.time.asc())
actions = list(query)
return [DatabaseActionRecords(
action_id=action.action_id,
time=action.time,
action_name=action.action_name,
action_data=action.action_data,
action_done=action.action_done,
action_build_into_prompt=action.action_build_into_prompt,
action_prompt_display=action.action_prompt_display,
chat_id=action.chat_id,
chat_info_stream_id=action.chat_info_stream_id,
chat_info_platform=action.chat_info_platform,
) for action in actions]
return [
DatabaseActionRecords(
action_id=action.action_id,
time=action.time,
action_name=action.action_name,
action_data=action.action_data,
action_done=action.action_done,
action_build_into_prompt=action.action_build_into_prompt,
action_prompt_display=action.action_prompt_display,
chat_id=action.chat_id,
chat_info_stream_id=action.chat_info_stream_id,
chat_info_platform=action.chat_info_platform,
)
for action in actions
]
def get_actions_by_timestamp_with_chat_inclusive(
@ -474,7 +477,7 @@ def _build_readable_messages_internal(
truncated_content = content
if 0 < limit < original_len:
truncated_content = f"{content[:limit]}{replace_content}"
truncated_content = f"{content[:limit]}{replace_content}" # pyright: ignore[reportPossiblyUnboundVariable]
detailed_message.append((timestamp, name, truncated_content, is_action))
else:
@ -544,7 +547,7 @@ def build_pic_mapping_info(pic_id_mapping: Dict[str, str]) -> str:
return "\n".join(mapping_lines)
def build_readable_actions(actions: List[DatabaseActionRecords],mode:str="relative") -> str:
def build_readable_actions(actions: List[DatabaseActionRecords], mode: str = "relative") -> str:
"""
将动作列表转换为可读的文本格式
格式: 分钟前你使用了(action_name)具体内容是action_prompt_display
@ -585,6 +588,8 @@ def build_readable_actions(actions: List[DatabaseActionRecords],mode:str="relati
action_time_struct = time.localtime(action_time)
time_str = time.strftime("%H:%M:%S", action_time_struct)
time_ago_str = f"{time_str}"
else:
raise ValueError(f"Unsupported mode: {mode}")
line = f"{time_ago_str},你使用了“{action_name}”,具体内容是:“{action_prompt_display}"
output_lines.append(line)

View File

@ -43,15 +43,15 @@ def db_message_to_str(message_dict: dict) -> str:
return result
def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, bool, float]:
"""检查消息是否提到了机器人"""
keywords = [global_config.bot.nickname]
nicknames = global_config.bot.alias_names
keywords = [global_config.bot.nickname] + list(global_config.bot.alias_names)
reply_probability = 0.0
is_at = False
is_mentioned = False
if message.is_mentioned is not None:
return bool(message.is_mentioned), message.is_mentioned
# 这部分怎么处理啊啊啊啊
#我觉得可以给消息加一个 reply_probability_boost字段
if (
message.message_info.additional_config is not None
and message.message_info.additional_config.get("is_mentioned") is not None
@ -59,18 +59,15 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
try:
reply_probability = float(message.message_info.additional_config.get("is_mentioned")) # type: ignore
is_mentioned = True
return is_mentioned, reply_probability
return is_mentioned, is_at, reply_probability
except Exception as e:
logger.warning(str(e))
logger.warning(
f"消息中包含不合理的设置 is_mentioned: {message.message_info.additional_config.get('is_mentioned')}"
)
if global_config.bot.nickname in message.processed_plain_text:
is_mentioned = True
for alias_name in global_config.bot.alias_names:
if alias_name in message.processed_plain_text:
for keyword in keywords:
if keyword in message.processed_plain_text:
is_mentioned = True
# 判断是否被@
@ -78,10 +75,6 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
is_at = True
is_mentioned = True
# print(f"message.processed_plain_text: {message.processed_plain_text}")
# print(f"is_mentioned: {is_mentioned}")
# print(f"is_at: {is_at}")
if is_at and global_config.chat.at_bot_inevitable_reply:
reply_probability = 1.0
logger.debug("被@回复概率设置为100%")
@ -104,13 +97,10 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
for keyword in keywords:
if keyword in message_content:
is_mentioned = True
for nickname in nicknames:
if nickname in message_content:
is_mentioned = True
if is_mentioned and global_config.chat.mentioned_bot_inevitable_reply:
if is_mentioned and global_config.chat.mentioned_bot_reply:
reply_probability = 1.0
logger.debug("被提及回复概率设置为100%")
return is_mentioned, reply_probability
return is_mentioned, is_at, reply_probability
async def get_embedding(text, request_type="embedding") -> Optional[List[float]]:
@ -834,3 +824,79 @@ def parse_keywords_string(keywords_input) -> list[str]:
# 如果没有分隔符,返回单个关键词
return [keywords_str] if keywords_str else []
def cut_key_words(concept_name: str) -> list[str]:
"""对概念名称进行jieba分词并过滤掉关键词列表中的关键词"""
concept_name_tokens = list(jieba.cut(concept_name))
# 定义常见连词、停用词与标点
conjunctions = {
"", "", "", "", "以及", "并且", "而且", "", "或者", ""
}
stop_words = {
"", "", "", "", "", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "而且", "或者", "", "以及"
}
chinese_punctuations = set(",。!?、;:()【】《》“”‘’—…·-——,.!?;:()[]<>'\"/\\")
# 清理空白并初步过滤纯标点
cleaned_tokens = []
for tok in concept_name_tokens:
t = tok.strip()
if not t:
continue
# 去除纯标点
if all(ch in chinese_punctuations for ch in t):
continue
cleaned_tokens.append(t)
# 合并连词两侧的词(仅当两侧都存在且不是标点/停用词时)
merged_tokens = []
i = 0
n = len(cleaned_tokens)
while i < n:
tok = cleaned_tokens[i]
if tok in conjunctions and merged_tokens and i + 1 < n:
left = merged_tokens[-1]
right = cleaned_tokens[i + 1]
# 左右都需要是有效词
if left and right \
and left not in conjunctions and right not in conjunctions \
and left not in stop_words and right not in stop_words \
and not all(ch in chinese_punctuations for ch in left) \
and not all(ch in chinese_punctuations for ch in right):
# 合并为一个新词,并替换掉左侧与跳过右侧
combined = f"{left}{tok}{right}"
merged_tokens[-1] = combined
i += 2
continue
# 常规推进
merged_tokens.append(tok)
i += 1
# 二次过滤:去除停用词、单字符纯标点与无意义项
result_tokens = []
seen = set()
# ban_words = set(getattr(global_config.memory, "memory_ban_words", []) or [])
for tok in merged_tokens:
if tok in conjunctions:
# 独立连词丢弃
continue
if tok in stop_words:
continue
# if tok in ban_words:
# continue
if all(ch in chinese_punctuations for ch in tok):
continue
if tok.strip() == "":
continue
if tok not in seen:
seen.add(tok)
result_tokens.append(tok)
filtered_concept_name_tokens = result_tokens
return filtered_concept_name_tokens

View File

@ -4,7 +4,6 @@ import time
import hashlib
import uuid
import io
import asyncio
import numpy as np
from typing import Optional, Tuple
@ -177,7 +176,7 @@ class ImageManager:
emotion_prompt, temperature=0.3, max_tokens=50
)
if emotion_result is None:
if not emotion_result:
logger.warning("LLM未能生成情感标签使用详细描述的前几个词")
# 降级处理:从详细描述中提取关键词
import jieba

View File

@ -67,6 +67,8 @@ class DatabaseMessages(BaseDataModel):
key_words: Optional[str] = None,
key_words_lite: Optional[str] = None,
is_mentioned: Optional[bool] = None,
is_at: Optional[bool] = None,
reply_probability_boost: Optional[float] = None,
processed_plain_text: Optional[str] = None,
display_message: Optional[str] = None,
priority_mode: Optional[str] = None,
@ -104,6 +106,9 @@ class DatabaseMessages(BaseDataModel):
self.key_words_lite = key_words_lite
self.is_mentioned = is_mentioned
self.is_at = is_at
self.reply_probability_boost = reply_probability_boost
self.processed_plain_text = processed_plain_text
self.display_message = display_message
@ -171,6 +176,8 @@ class DatabaseMessages(BaseDataModel):
"key_words": self.key_words,
"key_words_lite": self.key_words_lite,
"is_mentioned": self.is_mentioned,
"is_at": self.is_at,
"reply_probability_boost": self.reply_probability_boost,
"processed_plain_text": self.processed_plain_text,
"display_message": self.display_message,
"priority_mode": self.priority_mode,

View File

@ -137,7 +137,8 @@ class Messages(BaseModel):
key_words_lite = TextField(null=True)
is_mentioned = BooleanField(null=True)
is_at = BooleanField(null=True)
reply_probability_boost = DoubleField(null=True)
# 从 chat_info 扁平化而来的字段
chat_info_stream_id = TextField()
chat_info_platform = TextField()
@ -298,19 +299,6 @@ class GroupInfo(BaseModel):
# database = db # 继承自 BaseModel
table_name = "group_info"
class Memory(BaseModel):
memory_id = TextField(index=True)
chat_id = TextField(null=True)
memory_text = TextField(null=True)
keywords = TextField(null=True)
create_time = FloatField(null=True)
last_view_time = FloatField(null=True)
class Meta:
table_name = "memory"
class Expression(BaseModel):
"""
用于存储表达风格的模型
@ -377,7 +365,6 @@ def create_tables():
Expression,
GraphNodes, # 添加图节点表
GraphEdges, # 添加图边表
Memory,
ActionRecords, # 添加 ActionRecords 到初始化列表
]
)
@ -403,7 +390,6 @@ def initialize_database(sync_constraints=False):
OnlineTime,
PersonInfo,
Expression,
Memory,
GraphNodes,
GraphEdges,
ActionRecords, # 添加 ActionRecords 到初始化列表
@ -501,7 +487,6 @@ def sync_field_constraints():
OnlineTime,
PersonInfo,
Expression,
Memory,
GraphNodes,
GraphEdges,
ActionRecords,
@ -680,7 +665,6 @@ def check_field_constraints():
OnlineTime,
PersonInfo,
Expression,
Memory,
GraphNodes,
GraphEdges,
ActionRecords,

View File

@ -355,6 +355,7 @@ MODULE_COLORS = {
# 核心模块
"main": "\033[1;97m", # 亮白色+粗体 (主程序)
"memory": "\033[38;5;34m", # 天蓝色
"config": "\033[93m", # 亮黄色
"common": "\033[95m", # 亮紫色
@ -366,10 +367,9 @@ MODULE_COLORS = {
"llm_models": "\033[36m", # 青色
"remote": "\033[38;5;242m", # 深灰色,更不显眼
"planner": "\033[36m",
"memory": "\033[38;5;117m", # 天蓝色
"hfc": "\033[38;5;81m", # 稍微暗一些的青色,保持可读
"action_manager": "\033[38;5;208m", # 橙色不与replyer重复
# 关系系统
"relation": "\033[38;5;139m", # 柔和的紫色,不刺眼
# 聊天相关模块
"normal_chat": "\033[38;5;81m", # 亮蓝绿色

View File

@ -56,7 +56,7 @@ TEMPLATE_DIR = os.path.join(PROJECT_ROOT, "template")
# 考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
# 对该字段的更新请严格参照语义化版本规范https://semver.org/lang/zh-CN/
MMC_VERSION = "0.10.1"
MMC_VERSION = "0.10.2-snapshot.2"
def get_key_comment(toml_table, key):

View File

@ -60,9 +60,6 @@ class RelationshipConfig(ConfigBase):
enable_relationship: bool = True
"""是否启用关系系统"""
relation_frequency: int = 1
"""关系频率,麦麦构建关系的速度"""
@dataclass
class ChatConfig(ConfigBase):
@ -74,14 +71,14 @@ class ChatConfig(ConfigBase):
interest_rate_mode: Literal["fast", "accurate"] = "fast"
"""兴趣值计算模式fast为快速计算accurate为精确计算"""
mentioned_bot_inevitable_reply: bool = False
"""提及 bot 必然回复"""
mentioned_bot_reply: float = 1
"""提及 bot 必然回复1为100%回复0为不额外增幅"""
planner_size: float = 1.5
"""副规划器大小越小麦麦的动作执行能力越精细但是消耗更多token调大可以缓解429类错误"""
at_bot_inevitable_reply: bool = False
"""@bot 必然回复"""
at_bot_inevitable_reply: float = 1
"""@bot 必然回复1为100%回复0为不额外增幅"""
talk_frequency: float = 0.5
"""回复频率阈值"""
@ -336,14 +333,8 @@ class MemoryConfig(ConfigBase):
enable_memory: bool = True
"""是否启用记忆系统"""
memory_build_frequency: int = 1
"""记忆构建频率(秒)"""
memory_compress_rate: float = 0.1
"""记忆压缩率"""
forget_memory_interval: int = 1000
forget_memory_interval: int = 1500
"""记忆遗忘间隔(秒)"""
memory_forget_time: int = 24
@ -355,9 +346,6 @@ class MemoryConfig(ConfigBase):
memory_ban_words: list[str] = field(default_factory=lambda: ["表情包", "图片", "回复", "聊天记录"])
"""不允许记忆的词列表"""
enable_instant_memory: bool = True
"""是否启用即时记忆"""
@dataclass
class MoodConfig(ConfigBase):

View File

@ -96,3 +96,14 @@ class PermissionDeniedException(Exception):
def __str__(self):
return self.message
class EmptyResponseException(Exception):
"""响应内容为空"""
def __init__(self, message: str = "响应内容为空,这可能是一个临时性问题"):
super().__init__(message)
self.message = message
def __str__(self):
return self.message

View File

@ -37,6 +37,7 @@ from ..exceptions import (
NetworkConnectionError,
RespNotOkException,
ReqAbortException,
EmptyResponseException,
)
from ..payload_content.message import Message, RoleType
from ..payload_content.resp_format import RespFormat, RespFormatType
@ -85,6 +86,8 @@ def _convert_messages(
role = "model"
elif message.role == RoleType.User:
role = "user"
else:
raise ValueError(f"Unsupported role: {message.role}")
# 添加Content
if isinstance(message.content, str):
@ -224,6 +227,9 @@ def _build_stream_api_resp(
resp.tool_calls.append(ToolCall(call_id, function_name, arguments))
if not resp.content and not resp.tool_calls:
raise EmptyResponseException()
return resp
@ -284,26 +290,27 @@ def _default_normal_response_parser(
"""
api_response = APIResponse()
if not hasattr(resp, "candidates") or not resp.candidates:
raise RespParseException(resp, "响应解析失败缺失candidates字段")
# 解析思考内容
try:
if resp.candidates[0].content and resp.candidates[0].content.parts:
for part in resp.candidates[0].content.parts:
if not part.text:
continue
if part.thought:
api_response.reasoning_content = (
api_response.reasoning_content + part.text if api_response.reasoning_content else part.text
)
if candidates := resp.candidates:
if candidates[0].content and candidates[0].content.parts:
for part in candidates[0].content.parts:
if not part.text:
continue
if part.thought:
api_response.reasoning_content = (
api_response.reasoning_content + part.text if api_response.reasoning_content else part.text
)
except Exception as e:
logger.warning(f"解析思考内容时发生错误: {e},跳过解析")
if resp.text:
api_response.content = resp.text
# 解析响应内容
api_response.content = resp.text
if resp.function_calls:
# 解析工具调用
if function_calls := resp.function_calls:
api_response.tool_calls = []
for call in resp.function_calls:
for call in function_calls:
try:
if not isinstance(call.args, dict):
raise RespParseException(resp, "响应解析失败,工具调用参数无法解析为字典类型")
@ -313,17 +320,22 @@ def _default_normal_response_parser(
except Exception as e:
raise RespParseException(resp, "响应解析失败,无法解析工具调用参数") from e
if resp.usage_metadata:
# 解析使用情况
if usage_metadata := resp.usage_metadata:
_usage_record = (
resp.usage_metadata.prompt_token_count or 0,
(resp.usage_metadata.candidates_token_count or 0) + (resp.usage_metadata.thoughts_token_count or 0),
resp.usage_metadata.total_token_count or 0,
usage_metadata.prompt_token_count or 0,
(usage_metadata.candidates_token_count or 0) + (usage_metadata.thoughts_token_count or 0),
usage_metadata.total_token_count or 0,
)
else:
_usage_record = None
api_response.raw_data = resp
# 最终的、唯一的空响应检查
if not api_response.content and not api_response.tool_calls:
raise EmptyResponseException("响应中既无文本内容也无工具调用")
return api_response, _usage_record

View File

@ -30,6 +30,7 @@ from ..exceptions import (
NetworkConnectionError,
RespNotOkException,
ReqAbortException,
EmptyResponseException,
)
from ..payload_content.message import Message, RoleType
from ..payload_content.resp_format import RespFormat
@ -235,6 +236,9 @@ def _build_stream_api_resp(
resp.tool_calls.append(ToolCall(call_id, function_name, arguments))
if not resp.content and not resp.tool_calls:
raise EmptyResponseException()
return resp
@ -332,7 +336,7 @@ def _default_normal_response_parser(
api_response = APIResponse()
if not hasattr(resp, "choices") or len(resp.choices) == 0:
raise RespParseException(resp, "响应解析失败缺失choices字段")
raise EmptyResponseException("响应解析失败缺失choices字段或choices列表为空")
message_part = resp.choices[0].message
if hasattr(message_part, "reasoning_content") and message_part.reasoning_content: # type: ignore
@ -377,6 +381,9 @@ def _default_normal_response_parser(
# 将原始响应存储在原始数据中
api_response.raw_data = resp
if not api_response.content and not api_response.tool_calls:
raise EmptyResponseException()
return api_response, _usage_record

View File

@ -14,7 +14,13 @@ from .payload_content.resp_format import RespFormat
from .payload_content.tool_option import ToolOption, ToolCall, ToolOptionBuilder, ToolParamType
from .model_client.base_client import BaseClient, APIResponse, client_registry
from .utils import compress_messages, llm_usage_recorder
from .exceptions import NetworkConnectionError, ReqAbortException, RespNotOkException, RespParseException
from .exceptions import (
NetworkConnectionError,
ReqAbortException,
RespNotOkException,
RespParseException,
EmptyResponseException,
)
install(extra_lines=3)
@ -150,19 +156,19 @@ class LLMRequest:
"""
# 请求体构建
start_time = time.time()
message_builder = MessageBuilder()
message_builder.add_text_content(prompt)
messages = [message_builder.build()]
tool_built = self._build_tool_options(tools)
# 模型选择
model_info, api_provider, client = self._select_model()
# 请求并处理返回值
logger.debug(f"LLM选择耗时: {model_info.name} {time.time() - start_time}")
response = await self._execute_request(
api_provider=api_provider,
client=client,
@ -173,8 +179,7 @@ class LLMRequest:
max_tokens=max_tokens,
tool_options=tool_built,
)
content = response.content
reasoning_content = response.reasoning_content or ""
tool_calls = response.tool_calls
@ -182,7 +187,7 @@ class LLMRequest:
if not reasoning_content and content:
content, extracted_reasoning = self._extract_reasoning(content)
reasoning_content = extracted_reasoning
if usage := response.usage:
llm_usage_recorder.record_usage_to_database(
model_info=model_info,
@ -192,14 +197,8 @@ class LLMRequest:
endpoint="/chat/completions",
time_cost=time.time() - start_time,
)
if not content:
if raise_when_empty:
logger.warning(f"生成的响应为空, 请求类型: {self.request_type}")
raise RuntimeError("生成的响应为空")
content = "生成的响应为空,请检查模型配置或输入内容是否正确"
return content, (reasoning_content, model_info.name, tool_calls)
return content or "", (reasoning_content, model_info.name, tool_calls)
async def get_embedding(self, embedding_input: str) -> Tuple[List[float], str]:
"""获取嵌入向量
@ -248,11 +247,11 @@ class LLMRequest:
)
model_info = model_config.get_model_info(least_used_model_name)
api_provider = model_config.get_provider(model_info.api_provider)
# 对于嵌入任务,强制创建新的客户端实例以避免事件循环问题
force_new_client = (self.request_type == "embedding")
force_new_client = self.request_type == "embedding"
client = client_registry.get_client_class_instance(api_provider, force_new=force_new_client)
logger.debug(f"选择请求模型: {model_info.name}")
total_tokens, penalty, usage_penalty = self.model_usage[model_info.name]
self.model_usage[model_info.name] = (total_tokens, penalty, usage_penalty + 1) # 增加使用惩罚值防止连续使用
@ -367,6 +366,13 @@ class LLMRequest:
can_retry_msg=f"任务-'{task_name}' 模型-'{model_name}': 连接异常,将于{retry_interval}秒后重试",
cannot_retry_msg=f"任务-'{task_name}' 模型-'{model_name}': 连接异常超过最大重试次数请检查网络连接状态或URL是否正确",
)
elif isinstance(e, EmptyResponseException): # 空响应错误
return self._check_retry(
remain_try,
retry_interval,
can_retry_msg=f"任务-'{task_name}' 模型-'{model_name}': 收到空响应,将于{retry_interval}秒后重试。原因: {e}",
cannot_retry_msg=f"任务-'{task_name}' 模型-'{model_name}': 收到空响应,超过最大重试次数,放弃请求",
)
elif isinstance(e, ReqAbortException):
logger.warning(f"任务-'{task_name}' 模型-'{model_name}': 请求被中断,详细信息-{str(e.message)}")
return -1, None # 不再重试请求该模型

View File

@ -37,10 +37,9 @@ logger = get_logger("main")
class MainSystem:
def __init__(self):
# 根据配置条件性地初始化记忆系统
self.hippocampus_manager = None
if global_config.memory.enable_memory:
self.hippocampus_manager = hippocampus_manager
else:
self.hippocampus_manager = None
# 使用消息API替代直接的FastAPI实例
self.app: MessageServer = get_global_api()
@ -81,12 +80,12 @@ class MainSystem:
# 启动API服务器
# start_api_server()
# logger.info("API服务器启动成功")
# 启动LPMM
lpmm_start_up()
# 加载所有actions包括默认的和插件的
plugin_manager.load_all_plugins()
plugin_manager.load_all_plugins()
# 初始化表情管理器
get_emoji_manager().initialize()
@ -114,16 +113,14 @@ class MainSystem:
# 将bot.py中的chat_bot.message_process消息处理函数注册到api.py的消息处理基类中
self.app.register_message_handler(chat_bot.message_process)
await check_and_run_migrations()
# 触发 ON_START 事件
from src.plugin_system.core.events_manager import events_manager
from src.plugin_system.base.component_types import EventType
await events_manager.handle_mai_events(
event_type=EventType.ON_START
)
await events_manager.handle_mai_events(event_type=EventType.ON_START)
# logger.info("已触发 ON_START 事件")
try:
init_time = int(1000 * (time.time() - init_start_time))
@ -162,8 +159,6 @@ class MainSystem:
logger.info("[记忆遗忘] 记忆遗忘完成")
async def main():
"""主函数"""
system = MainSystem()
@ -175,5 +170,3 @@ async def main():
if __name__ == "__main__":
asyncio.run(main())

View File

@ -43,9 +43,9 @@ DEFAULT_BODY_CODE = {
}
def get_head_code() -> dict:
async def get_head_code() -> dict:
"""获取头部动作代码字典"""
head_code_str = global_prompt_manager.get_prompt("head_code_prompt")
head_code_str = await global_prompt_manager.format_prompt("head_code_prompt")
if not head_code_str:
return DEFAULT_HEAD_CODE
try:
@ -55,9 +55,9 @@ def get_head_code() -> dict:
return DEFAULT_HEAD_CODE
def get_body_code() -> dict:
async def get_body_code() -> dict:
"""获取身体动作代码字典"""
body_code_str = global_prompt_manager.get_prompt("body_code_prompt")
body_code_str = await global_prompt_manager.format_prompt("body_code_prompt")
if not body_code_str:
return DEFAULT_BODY_CODE
try:
@ -143,7 +143,7 @@ class ChatAction:
async def send_action_update(self):
"""发送动作更新到前端"""
body_code = get_body_code().get(self.body_action, "")
body_code = (await get_body_code()).get(self.body_action, "")
await send_api.custom_to_stream(
message_type="body_action",
content=body_code,
@ -184,7 +184,7 @@ class ChatAction:
try:
# 冷却池处理:过滤掉冷却中的动作
self._update_body_action_cooldown()
available_actions = [k for k in get_body_code().keys() if k not in self.body_action_cooldown]
available_actions = [k for k in (await get_body_code()).keys() if k not in self.body_action_cooldown]
all_actions = "\n".join(available_actions)
prompt = await global_prompt_manager.format_prompt(
@ -246,7 +246,7 @@ class ChatAction:
try:
# 冷却池处理:过滤掉冷却中的动作
self._update_body_action_cooldown()
available_actions = [k for k in get_body_code().keys() if k not in self.body_action_cooldown]
available_actions = [k for k in (await get_body_code()).keys() if k not in self.body_action_cooldown]
all_actions = "\n".join(available_actions)
prompt = await global_prompt_manager.format_prompt(

View File

@ -241,7 +241,7 @@ class Person:
self.name_reason: Optional[str] = None
self.know_times = 0
self.know_since = None
self.last_know = None
self.last_know: Optional[float] = None
self.memory_points = []
# 初始化性格特征相关字段

View File

@ -25,6 +25,7 @@ from .base import (
EventType,
MaiMessages,
ToolParamType,
CustomEventHandlerResult,
)
# 导入工具模块
@ -37,7 +38,7 @@ from .utils import (
from .apis import (
chat_api,
tool_api,
tool_api,
component_manage_api,
config_api,
database_api,
@ -52,6 +53,15 @@ from .apis import (
get_logger,
)
from src.common.data_models.database_data_model import (
DatabaseMessages,
DatabaseUserInfo,
DatabaseGroupInfo,
DatabaseChatInfo,
)
from src.common.data_models.info_data_model import TargetPersonInfo, ActionPlannerInfo
from src.common.data_models.llm_data_model import LLMGenerationDataModel
__version__ = "2.0.0"
@ -92,6 +102,7 @@ __all__ = [
"ToolParamType",
# 消息
"MaiMessages",
"CustomEventHandlerResult",
# 装饰器
"register_plugin",
"ConfigField",
@ -101,4 +112,12 @@ __all__ = [
# "ManifestGenerator",
# "validate_plugin_manifest",
# "generate_plugin_manifest",
# 数据模型
"DatabaseMessages",
"DatabaseUserInfo",
"DatabaseGroupInfo",
"DatabaseChatInfo",
"TargetPersonInfo",
"ActionPlannerInfo",
"LLMGenerationDataModel"
]

View File

@ -1,27 +1,26 @@
from src.common.logger import get_logger
from src.chat.frequency_control.focus_value_control import focus_value_control
from src.chat.frequency_control.talk_frequency_control import talk_frequency_control
from src.chat.frequency_control.frequency_control import frequency_control_manager
logger = get_logger("frequency_api")
def get_current_focus_value(chat_id: str) -> float:
return focus_value_control.get_focus_value_control(chat_id).get_current_focus_value()
return frequency_control_manager.get_or_create_frequency_control(chat_id).get_final_focus_value()
def get_current_talk_frequency(chat_id: str) -> float:
return talk_frequency_control.get_talk_frequency_control(chat_id).get_current_talk_frequency()
return frequency_control_manager.get_or_create_frequency_control(chat_id).get_final_talk_frequency()
def set_focus_value_adjust(chat_id: str, focus_value_adjust: float) -> None:
focus_value_control.get_focus_value_control(chat_id).focus_value_adjust = focus_value_adjust
frequency_control_manager.get_or_create_frequency_control(chat_id).focus_value_external_adjust = focus_value_adjust
def set_talk_frequency_adjust(chat_id: str, talk_frequency_adjust: float) -> None:
talk_frequency_control.get_talk_frequency_control(chat_id).talk_frequency_adjust = talk_frequency_adjust
frequency_control_manager.get_or_create_frequency_control(chat_id).talk_frequency_external_adjust = talk_frequency_adjust
def get_focus_value_adjust(chat_id: str) -> float:
return focus_value_control.get_focus_value_control(chat_id).focus_value_adjust
return frequency_control_manager.get_or_create_frequency_control(chat_id).focus_value_external_adjust
def get_talk_frequency_adjust(chat_id: str) -> float:
return talk_frequency_control.get_talk_frequency_control(chat_id).talk_frequency_adjust
return frequency_control_manager.get_or_create_frequency_control(chat_id).talk_frequency_external_adjust

View File

@ -99,6 +99,8 @@ async def _send_to_target(
# 创建消息段
message_segment = Seg(type=message_type, data=content) # type: ignore
reply_to_platform_id = ""
anchor_message: Union["MessageRecv", None] = None
if reply_message:
anchor_message = message_dict_to_message_recv(reply_message.flatten())
if anchor_message:
@ -107,9 +109,6 @@ async def _send_to_target(
reply_to_platform_id = (
f"{anchor_message.message_info.platform}:{anchor_message.message_info.user_info.user_id}"
)
else:
reply_to_platform_id = ""
anchor_message = None
# 构建发送消息对象
bot_message = MessageSending(

View File

@ -23,6 +23,7 @@ from .component_types import (
EventType,
MaiMessages,
ToolParamType,
CustomEventHandlerResult,
)
from .config_types import ConfigField
@ -46,4 +47,5 @@ __all__ = [
"BaseEventHandler",
"MaiMessages",
"ToolParamType",
"CustomEventHandlerResult",
]

View File

@ -39,7 +39,7 @@ class BaseAction(ABC):
chat_stream: ChatStream,
log_prefix: str = "",
plugin_config: Optional[dict] = None,
action_message: Optional[dict] = None,
action_message: Optional["DatabaseMessages"] = None,
**kwargs,
):
# sourcery skip: hoist-similar-statement-from-if, merge-else-if-into-elif, move-assign-in-block, swap-if-else-branches, swap-nested-ifs
@ -76,15 +76,19 @@ class BaseAction(ABC):
self.action_require: list[str] = getattr(self.__class__, "action_require", []).copy()
# 设置激活类型实例属性(从类属性复制,提供默认值)
self.focus_activation_type = getattr(self.__class__, "focus_activation_type", ActionActivationType.ALWAYS) #已弃用
self.focus_activation_type = getattr(
self.__class__, "focus_activation_type", ActionActivationType.ALWAYS
) # 已弃用
"""FOCUS模式下的激活类型"""
self.normal_activation_type = getattr(self.__class__, "normal_activation_type", ActionActivationType.ALWAYS) #已弃用
self.normal_activation_type = getattr(
self.__class__, "normal_activation_type", ActionActivationType.ALWAYS
) # 已弃用
"""NORMAL模式下的激活类型"""
self.activation_type = getattr(self.__class__, "activation_type", self.focus_activation_type)
"""激活类型"""
self.random_activation_probability: float = getattr(self.__class__, "random_activation_probability", 0.0)
"""当激活类型为RANDOM时的概率"""
self.llm_judge_prompt: str = getattr(self.__class__, "llm_judge_prompt", "") #已弃用
self.llm_judge_prompt: str = getattr(self.__class__, "llm_judge_prompt", "") # 已弃用
"""协助LLM进行判断的Prompt"""
self.activation_keywords: list[str] = getattr(self.__class__, "activation_keywords", []).copy()
"""激活类型为KEYWORD时的KEYWORDS列表"""
@ -114,16 +118,21 @@ class BaseAction(ABC):
if self.action_message:
self.has_action_message = True
else:
self.action_message = {}
if self.has_action_message:
if self.action_name != "no_action":
self.group_id = str(self.action_message.get("chat_info_group_id", None))
self.group_name = self.action_message.get("chat_info_group_name", None)
self.group_id = (
str(self.action_message.chat_info.group_info.group_id)
if self.action_message.chat_info.group_info
else None
)
self.group_name = (
self.action_message.chat_info.group_info.group_name
if self.action_message.chat_info.group_info
else None
)
self.user_id = str(self.action_message.get("user_id", None))
self.user_nickname = self.action_message.get("user_nickname", None)
self.user_id = str(self.action_message.user_info.user_id)
self.user_nickname = self.action_message.user_info.user_nickname
if self.group_id:
self.is_group = True
self.target_id = self.group_id

View File

@ -1,38 +0,0 @@
from typing import TYPE_CHECKING, List, Type
from src.common.logger import get_logger
from src.plugin_system.base.component_types import EventType, MaiMessages
if TYPE_CHECKING:
from .base_events_handler import BaseEventHandler
logger = get_logger("base_event")
class BaseEvent:
def __init__(self, event_type: EventType | str) -> None:
self.event_type = event_type
self.subscribers: List["BaseEventHandler"] = []
def register_handler_to_event(self, handler: "BaseEventHandler") -> bool:
if handler not in self.subscribers:
self.subscribers.append(handler)
return True
logger.warning(f"Handler {handler.handler_name} 已经注册,不可多次注册")
return False
def remove_handler_from_event(self, handler_class: Type["BaseEventHandler"]) -> bool:
for handler in self.subscribers:
if isinstance(handler, handler_class):
self.subscribers.remove(handler)
return True
logger.warning(f"Handler {handler_class.__name__} 未注册,无法移除")
return False
def trigger_event(self, message: MaiMessages):
copied_message = message.deepcopy()
for handler in self.subscribers:
result = handler.execute(copied_message)
# TODO: Unfinished Events Handler

View File

@ -1,8 +1,8 @@
from abc import ABC, abstractmethod
from typing import Tuple, Optional, Dict
from typing import Tuple, Optional, Dict, List
from src.common.logger import get_logger
from .component_types import MaiMessages, EventType, EventHandlerInfo, ComponentType
from .component_types import MaiMessages, EventType, EventHandlerInfo, ComponentType, CustomEventHandlerResult
logger = get_logger("base_event_handler")
@ -30,16 +30,19 @@ class BaseEventHandler(ABC):
"""对应插件名"""
self.plugin_config: Optional[Dict] = None
"""插件配置字典"""
self._events_subscribed: List[EventType | str] = []
if self.event_type == EventType.UNKNOWN:
raise NotImplementedError("事件处理器必须指定 event_type")
@abstractmethod
async def execute(self, message: MaiMessages | None) -> Tuple[bool, bool, Optional[str]]:
async def execute(
self, message: MaiMessages | None
) -> Tuple[bool, bool, Optional[str], Optional[CustomEventHandlerResult]]:
"""执行事件处理的抽象方法,子类必须实现
Args:
message (MaiMessages | None): 事件消息对象当你注册的事件为ON_START和ON_STOP时message为None
Returns:
Tuple[bool, bool, Optional[str]]: (是否执行成功, 是否需要继续处理, 可选的返回消息)
Tuple[bool, bool, Optional[str], Optional[CustomEventHandlerResult]]: (是否执行成功, 是否需要继续处理, 可选的返回消息, 可选的自定义结果)
"""
raise NotImplementedError("子类必须实现 execute 方法")

View File

@ -285,3 +285,9 @@ class MaiMessages:
def deepcopy(self):
return copy.deepcopy(self)
@dataclass
class CustomEventHandlerResult:
message: str = ""
timestamp: float = 0.0
extra_info: Optional[Dict] = None

View File

@ -124,6 +124,7 @@ class ComponentRegistry:
self._components_classes[namespaced_name] = component_class
# 根据组件类型进行特定注册(使用原始名称)
ret = False
match component_type:
case ComponentType.ACTION:
assert isinstance(component_info, ActionInfo)

View File

@ -5,7 +5,7 @@ from typing import List, Dict, Optional, Type, Tuple, TYPE_CHECKING
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.chat_stream import get_chat_manager
from src.common.logger import get_logger
from src.plugin_system.base.component_types import EventType, EventHandlerInfo, MaiMessages
from src.plugin_system.base.component_types import EventType, EventHandlerInfo, MaiMessages, CustomEventHandlerResult
from src.plugin_system.base.base_events_handler import BaseEventHandler
from .global_announcement_manager import global_announcement_manager
@ -18,9 +18,23 @@ logger = get_logger("events_manager")
class EventsManager:
def __init__(self):
# 有权重的 events 订阅者注册表
self._events_subscribers: Dict[EventType | str, List[BaseEventHandler]] = {event: [] for event in EventType}
self._events_subscribers: Dict[EventType | str, List[BaseEventHandler]] = {}
self._handler_mapping: Dict[str, Type[BaseEventHandler]] = {} # 事件处理器映射表
self._handler_tasks: Dict[str, List[asyncio.Task]] = {} # 事件处理器正在处理的任务
self._events_result_history: Dict[EventType | str, List[CustomEventHandlerResult]] = {} # 事件的结果历史记录
self._history_enable_map: Dict[EventType | str, bool] = {} # 是否启用历史记录的映射表同时作为events注册表
# 事件注册(同时作为注册样例)
for event in EventType:
self.register_event(event, enable_history_result=False)
def register_event(self, event_type: EventType | str, enable_history_result: bool = False):
if event_type in self._events_subscribers:
raise ValueError(f"事件类型 {event_type} 已存在")
self._events_subscribers[event_type] = []
self._history_enable_map[event_type] = enable_history_result
if enable_history_result:
self._events_result_history[event_type] = []
def register_event_subscriber(self, handler_info: EventHandlerInfo, handler_class: Type[BaseEventHandler]) -> bool:
"""注册事件处理器
@ -32,69 +46,23 @@ class EventsManager:
Returns:
bool: 是否注册成功
"""
if not issubclass(handler_class, BaseEventHandler):
logger.error(f"{handler_class.__name__} 不是 BaseEventHandler 的子类")
return False
handler_name = handler_info.name
if handler_name in self._handler_mapping:
logger.warning(f"事件处理器 {handler_name} 已存在,跳过注册")
return False
if not issubclass(handler_class, BaseEventHandler):
logger.error(f"{handler_class.__name__} 不是 BaseEventHandler 的子类")
if handler_info.event_type not in self._history_enable_map:
logger.error(f"事件类型 {handler_info.event_type} 未注册,无法为其注册处理器 {handler_name}")
return False
self._handler_mapping[handler_name] = handler_class
return self._insert_event_handler(handler_class, handler_info)
def _prepare_message(
self,
event_type: EventType,
message: Optional[MessageRecv] = None,
llm_prompt: Optional[str] = None,
llm_response: Optional["LLMGenerationDataModel"] = None,
stream_id: Optional[str] = None,
action_usage: Optional[List[str]] = None,
) -> Optional[MaiMessages]:
"""根据事件类型和输入,准备和转换消息对象。"""
if message:
return self._transform_event_message(message, llm_prompt, llm_response)
if event_type not in [EventType.ON_START, EventType.ON_STOP]:
assert stream_id, "如果没有消息,必须为非启动/关闭事件提供流ID"
if event_type in [EventType.ON_MESSAGE, EventType.ON_PLAN, EventType.POST_LLM, EventType.AFTER_LLM]:
return self._build_message_from_stream(stream_id, llm_prompt, llm_response)
else:
return self._transform_event_without_message(stream_id, llm_prompt, llm_response, action_usage)
return None # ON_START, ON_STOP事件没有消息体
def _dispatch_handler_task(self, handler: BaseEventHandler, message: Optional[MaiMessages]):
"""分发一个非阻塞(异步)的事件处理任务。"""
try:
task = asyncio.create_task(handler.execute(message))
task_name = f"{handler.plugin_name}-{handler.handler_name}"
task.set_name(task_name)
task.add_done_callback(self._task_done_callback)
self._handler_tasks.setdefault(handler.handler_name, []).append(task)
except Exception as e:
logger.error(f"创建事件处理器任务 {handler.handler_name} 时发生异常: {e}", exc_info=True)
async def _dispatch_intercepting_handler(self, handler: BaseEventHandler, message: Optional[MaiMessages]) -> bool:
"""分发并等待一个阻塞(同步)的事件处理器,返回是否应继续处理。"""
try:
success, continue_processing, result = await handler.execute(message)
if not success:
logger.error(f"EventHandler {handler.handler_name} 执行失败: {result}")
else:
logger.debug(f"EventHandler {handler.handler_name} 执行成功: {result}")
return continue_processing
except Exception as e:
logger.error(f"EventHandler {handler.handler_name} 发生异常: {e}", exc_info=True)
return True # 发生异常时默认不中断其他处理
async def handle_mai_events(
self,
event_type: EventType,
@ -115,6 +83,8 @@ class EventsManager:
transformed_message = self._prepare_message(
event_type, message, llm_prompt, llm_response, stream_id, action_usage
)
if transformed_message:
transformed_message = transformed_message.deepcopy()
# 2. 获取并遍历处理器
handlers = self._events_subscribers.get(event_type, [])
@ -137,16 +107,68 @@ class EventsManager:
handler.set_plugin_config(plugin_config)
# 4. 根据类型分发任务
if handler.intercept_message:
if handler.intercept_message or event_type == EventType.ON_STOP: # 让ON_STOP的所有事件处理器都发挥作用防止还没执行即被取消
# 阻塞执行,并更新 continue_flag
should_continue = await self._dispatch_intercepting_handler(handler, transformed_message)
should_continue = await self._dispatch_intercepting_handler(handler, event_type, transformed_message)
continue_flag = continue_flag and should_continue
else:
# 异步执行,不阻塞
self._dispatch_handler_task(handler, transformed_message)
self._dispatch_handler_task(handler, event_type, transformed_message)
return continue_flag
async def cancel_handler_tasks(self, handler_name: str) -> None:
tasks_to_be_cancelled = self._handler_tasks.get(handler_name, [])
if remaining_tasks := [task for task in tasks_to_be_cancelled if not task.done()]:
for task in remaining_tasks:
task.cancel()
try:
await asyncio.wait_for(asyncio.gather(*remaining_tasks, return_exceptions=True), timeout=5)
logger.info(f"已取消事件处理器 {handler_name} 的所有任务")
except asyncio.TimeoutError:
logger.warning(f"取消事件处理器 {handler_name} 的任务超时,开始强制取消")
except Exception as e:
logger.error(f"取消事件处理器 {handler_name} 的任务时发生异常: {e}")
if handler_name in self._handler_tasks:
del self._handler_tasks[handler_name]
async def unregister_event_subscriber(self, handler_name: str) -> bool:
"""取消注册事件处理器"""
if handler_name not in self._handler_mapping:
logger.warning(f"事件处理器 {handler_name} 不存在,无法取消注册")
return False
await self.cancel_handler_tasks(handler_name)
handler_class = self._handler_mapping.pop(handler_name)
if not self._remove_event_handler_instance(handler_class):
return False
logger.info(f"事件处理器 {handler_name} 已成功取消注册")
return True
async def get_event_result_history(self, event_type: EventType | str) -> List[CustomEventHandlerResult]:
"""获取事件的结果历史记录"""
if event_type == EventType.UNKNOWN:
raise ValueError("未知事件类型")
if event_type not in self._history_enable_map:
raise ValueError(f"事件类型 {event_type} 未注册")
if not self._history_enable_map[event_type]:
raise ValueError(f"事件类型 {event_type} 的历史记录未启用")
return self._events_result_history[event_type]
async def clear_event_result_history(self, event_type: EventType | str) -> None:
"""清空事件的结果历史记录"""
if event_type == EventType.UNKNOWN:
raise ValueError("未知事件类型")
if event_type not in self._history_enable_map:
raise ValueError(f"事件类型 {event_type} 未注册")
if not self._history_enable_map[event_type]:
raise ValueError(f"事件类型 {event_type} 的历史记录未启用")
self._events_result_history[event_type] = []
def _insert_event_handler(self, handler_class: Type[BaseEventHandler], handler_info: EventHandlerInfo) -> bool:
"""插入事件处理器到对应的事件类型列表中并设置其插件配置"""
if handler_class.event_type == EventType.UNKNOWN:
@ -179,7 +201,10 @@ class EventsManager:
return False
def _transform_event_message(
self, message: MessageRecv, llm_prompt: Optional[str] = None, llm_response: Optional["LLMGenerationDataModel"] = None
self,
message: MessageRecv,
llm_prompt: Optional[str] = None,
llm_response: Optional["LLMGenerationDataModel"] = None,
) -> MaiMessages:
"""转换事件消息格式"""
# 直接赋值部分内容
@ -263,52 +288,100 @@ class EventsManager:
additional_data={"response_is_processed": True},
)
def _task_done_callback(self, task: asyncio.Task[Tuple[bool, bool, str | None]]):
def _prepare_message(
self,
event_type: EventType,
message: Optional[MessageRecv] = None,
llm_prompt: Optional[str] = None,
llm_response: Optional["LLMGenerationDataModel"] = None,
stream_id: Optional[str] = None,
action_usage: Optional[List[str]] = None,
) -> Optional[MaiMessages]:
"""根据事件类型和输入,准备和转换消息对象。"""
if message:
return self._transform_event_message(message, llm_prompt, llm_response)
if event_type not in [EventType.ON_START, EventType.ON_STOP]:
assert stream_id, "如果没有消息,必须为非启动/关闭事件提供流ID"
if event_type in [EventType.ON_MESSAGE, EventType.ON_PLAN, EventType.POST_LLM, EventType.AFTER_LLM]:
return self._build_message_from_stream(stream_id, llm_prompt, llm_response)
else:
return self._transform_event_without_message(stream_id, llm_prompt, llm_response, action_usage)
return None # ON_START, ON_STOP事件没有消息体
def _dispatch_handler_task(
self, handler: BaseEventHandler, event_type: EventType | str, message: Optional[MaiMessages] = None
):
"""分发一个非阻塞(异步)的事件处理任务。"""
if event_type == EventType.UNKNOWN:
raise ValueError("未知事件类型")
try:
task = asyncio.create_task(handler.execute(message))
task_name = f"{handler.plugin_name}-{handler.handler_name}"
task.set_name(task_name)
task.add_done_callback(lambda t: self._task_done_callback(t, event_type))
self._handler_tasks.setdefault(handler.handler_name, []).append(task)
except Exception as e:
logger.error(f"创建事件处理器任务 {handler.handler_name} 时发生异常: {e}", exc_info=True)
async def _dispatch_intercepting_handler(
self, handler: BaseEventHandler, event_type: EventType | str, message: Optional[MaiMessages] = None
) -> bool:
"""分发并等待一个阻塞(同步)的事件处理器,返回是否应继续处理。"""
if event_type == EventType.UNKNOWN:
raise ValueError("未知事件类型")
if event_type not in self._history_enable_map:
raise ValueError(f"事件类型 {event_type} 未注册")
try:
success, continue_processing, return_message, custom_result = await handler.execute(message)
if not success:
logger.error(f"EventHandler {handler.handler_name} 执行失败: {return_message}")
else:
logger.debug(f"EventHandler {handler.handler_name} 执行成功: {return_message}")
if self._history_enable_map[event_type] and custom_result:
self._events_result_history[event_type].append(custom_result)
return continue_processing
except KeyError:
logger.error(f"事件 {event_type} 注册的历史记录启用情况与实际不符合")
return True
except Exception as e:
logger.error(f"EventHandler {handler.handler_name} 发生异常: {e}", exc_info=True)
return True # 发生异常时默认不中断其他处理
def _task_done_callback(
self,
task: asyncio.Task[Tuple[bool, bool, str | None, CustomEventHandlerResult | None]],
event_type: EventType | str,
):
"""任务完成回调"""
task_name = task.get_name() or "Unknown Task"
if event_type == EventType.UNKNOWN:
raise ValueError("未知事件类型")
if event_type not in self._history_enable_map:
raise ValueError(f"事件类型 {event_type} 未注册")
try:
success, _, result = task.result() # 忽略是否继续的标志,因为消息本身未被拦截
success, _, result, custom_result = task.result() # 忽略是否继续的标志,因为消息本身未被拦截
if success:
logger.debug(f"事件处理任务 {task_name} 已成功完成: {result}")
else:
logger.error(f"事件处理任务 {task_name} 执行失败: {result}")
if self._history_enable_map[event_type] and custom_result:
self._events_result_history[event_type].append(custom_result)
except asyncio.CancelledError:
pass
except KeyError:
logger.error(f"事件 {event_type} 注册的历史记录启用情况与实际不符合")
except Exception as e:
logger.error(f"事件处理任务 {task_name} 发生异常: {e}")
finally:
with contextlib.suppress(ValueError, KeyError):
self._handler_tasks[task_name].remove(task)
async def cancel_handler_tasks(self, handler_name: str) -> None:
tasks_to_be_cancelled = self._handler_tasks.get(handler_name, [])
if remaining_tasks := [task for task in tasks_to_be_cancelled if not task.done()]:
for task in remaining_tasks:
task.cancel()
try:
await asyncio.wait_for(asyncio.gather(*remaining_tasks, return_exceptions=True), timeout=5)
logger.info(f"已取消事件处理器 {handler_name} 的所有任务")
except asyncio.TimeoutError:
logger.warning(f"取消事件处理器 {handler_name} 的任务超时,开始强制取消")
except Exception as e:
logger.error(f"取消事件处理器 {handler_name} 的任务时发生异常: {e}")
if handler_name in self._handler_tasks:
del self._handler_tasks[handler_name]
async def unregister_event_subscriber(self, handler_name: str) -> bool:
"""取消注册事件处理器"""
if handler_name not in self._handler_mapping:
logger.warning(f"事件处理器 {handler_name} 不存在,无法取消注册")
return False
await self.cancel_handler_tasks(handler_name)
handler_class = self._handler_mapping.pop(handler_name)
if not self._remove_event_handler_instance(handler_class):
return False
logger.info(f"事件处理器 {handler_name} 已成功取消注册")
return True
events_manager = EventsManager()

View File

@ -1,13 +1,12 @@
- [x] 自定义事件
- [ ] <del>允许handler随时订阅</del>
- [ ] 允许handler随时取消订阅
- [ ] 允许其他组件给handler增加订阅
- [ ] 允许其他组件给handler取消订阅
- [x] 允许其他组件给handler增加订阅
- [x] 允许其他组件给handler取消订阅
- [ ] <del>允许一个handler订阅多个事件</del>
- [ ] event激活时给handler传递参数
- [x] event激活时给handler传递参数
- [ ] handler能拿到所有handlers的结果按照处理权重
- [x] 随时注册
- [ ] 删除event
- [ ] <del>删除event</del>
- [ ] 必要性?
- [ ] 能够更改prompt
- [ ] 能够更改llm_response

View File

@ -0,0 +1,34 @@
{
"manifest_version": 1,
"name": "Memory Build组件",
"version": "1.0.0",
"description": "可以构建和管理记忆",
"author": {
"name": "Mai",
"url": "https://github.com/MaiM-with-u"
},
"license": "GPL-v3.0-or-later",
"host_application": {
"min_version": "0.10.1"
},
"homepage_url": "https://github.com/MaiM-with-u/maibot",
"repository_url": "https://github.com/MaiM-with-u/maibot",
"keywords": ["memory", "build", "built-in"],
"categories": ["Memory"],
"default_locale": "zh-CN",
"locales_path": "_locales",
"plugin_info": {
"is_built_in": true,
"plugin_type": "action_provider",
"components": [
{
"type": "build_memory",
"name": "build_memory",
"description": "构建记忆"
}
]
}
}

View File

@ -0,0 +1,134 @@
from typing import Tuple
from src.common.logger import get_logger
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt
from src.plugin_system import BaseAction, ActionActivationType
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.utils.utils import cut_key_words
logger = get_logger("memory")
def init_prompt():
Prompt(
"""
以下是一些记忆条目的分类
----------------------
{category_list}
----------------------
每一个分类条目类型代表了你对用户"{person_name}"的印象的一个类别
现在你有一条对 {person_name} 的新记忆内容
{memory_point}
请判断该记忆内容是否属于上述分类请给出分类的名称
如果不属于上述分类请输出一个合适的分类名称对新记忆内容进行概括要求分类名具有概括性
注意分类数一般不超过5个
请严格用json格式输出不要输出任何其他内容
{{
"category": "分类名称"
}} """,
"relation_category",
)
Prompt(
"""
以下是有关{category}的现有记忆
----------------------
{memory_list}
----------------------
现在你有一条对 {person_name} 的新记忆内容
{memory_point}
请判断该新记忆内容是否已经存在于现有记忆中你可以对现有进行进行以下修改
注意一般来说记忆内容不超过5个且记忆文本不应太长
1.新增当记忆内容不存在于现有记忆且不存在矛盾请用json格式输出
{{
"new_memory": "需要新增的记忆内容"
}}
2.加深印象如果这个新记忆已经存在于现有记忆中在内容上与现有记忆类似请用json格式输出
{{
"memory_id": 1, #请输出你认为需要加深印象的,与新记忆内容类似的,已经存在的记忆的序号
"integrate_memory": "加深后的记忆内容,合并内容类似的新记忆和旧记忆"
}}
3.整合如果这个新记忆与现有记忆产生矛盾请你结合其他记忆进行整合用json格式输出
{{
"memory_id": 1, #请输出你认为需要整合的,与新记忆存在矛盾的,已经存在的记忆的序号
"integrate_memory": "整合后的记忆内容,合并内容矛盾的新记忆和旧记忆"
}}
现在请你根据情况选出合适的修改方式并输出json不要输出其他内容
""",
"relation_category_update",
)
class BuildMemoryAction(BaseAction):
"""关系动作 - 构建关系"""
activation_type = ActionActivationType.LLM_JUDGE
parallel_action = True
# 动作基本信息
action_name = "build_memory"
action_description = "了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息"
# 动作参数定义
action_parameters = {
"concept_name": "需要了解或记忆的概念或事件的名称",
"concept_description": "需要了解或记忆的概念或事件的描述,需要具体且明确",
}
# 动作使用场景
action_require = [
"了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息",
"有你不了解的概念",
"有人要求你记住某个概念或者事件",
"你对某件事或概念有新的理解,或产生了兴趣",
]
# 关联类型
associated_types = ["text"]
async def execute(self) -> Tuple[bool, str]:
"""执行关系动作"""
try:
# 1. 获取构建关系的原因
concept_description = self.action_data.get("concept_description", "")
logger.info(f"{self.log_prefix} 添加记忆原因: {self.reasoning}")
concept_name = self.action_data.get("concept_name", "")
# 2. 获取目标用户信息
# 对 concept_name 进行jieba分词
concept_name_tokens = cut_key_words(concept_name)
# logger.info(f"{self.log_prefix} 对 concept_name 进行分词结果: {concept_name_tokens}")
filtered_concept_name_tokens = [
token for token in concept_name_tokens if all(keyword not in token for keyword in global_config.memory.memory_ban_words)
]
if not filtered_concept_name_tokens:
logger.warning(f"{self.log_prefix} 过滤后的概念名称列表为空,跳过添加记忆")
return False, "过滤后的概念名称列表为空,跳过添加记忆"
similar_topics_dict = hippocampus_manager.get_hippocampus().parahippocampal_gyrus.get_similar_topics_from_keywords(filtered_concept_name_tokens)
await hippocampus_manager.get_hippocampus().parahippocampal_gyrus.add_memory_with_similar(concept_description, similar_topics_dict)
return True, f"成功添加记忆: {concept_name}"
except Exception as e:
logger.error(f"{self.log_prefix} 构建记忆时出错: {e}")
return False, f"构建记忆时出错: {e}"
# 还缺一个关系的太多遗忘和对应的提取
init_prompt()

View File

@ -0,0 +1,58 @@
from typing import List, Tuple, Type
# 导入新插件系统
from src.plugin_system import BasePlugin, register_plugin, ComponentInfo
from src.plugin_system.base.config_types import ConfigField
# 导入依赖的系统组件
from src.common.logger import get_logger
from src.plugins.built_in.memory.build_memory import BuildMemoryAction
logger = get_logger("relation_actions")
@register_plugin
class MemoryBuildPlugin(BasePlugin):
"""关系动作插件
系统内置插件提供基础的聊天交互功能
- Reply: 回复动作
- NoReply: 不回复动作
- Emoji: 表情动作
注意插件基本信息优先从_manifest.json文件中读取
"""
# 插件基本信息
plugin_name: str = "memory_build" # 内部标识符
enable_plugin: bool = True
dependencies: list[str] = [] # 插件依赖列表
python_dependencies: list[str] = [] # Python包依赖列表
config_file_name: str = "config.toml"
# 配置节描述
config_section_descriptions = {
"plugin": "插件启用配置",
"components": "核心组件启用配置",
}
# 配置Schema定义
config_schema: dict = {
"plugin": {
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
"config_version": ConfigField(type=str, default="1.1.0", description="配置文件版本"),
},
"components": {
"memory_max_memory_num": ConfigField(type=int, default=10, description="记忆最大数量"),
},
}
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件列表"""
# --- 根据配置注册组件 ---
components = []
components.append((BuildMemoryAction.get_action_info(), BuildMemoryAction))
return components

View File

@ -9,7 +9,7 @@
},
"license": "GPL-v3.0-or-later",
"host_application": {
"min_version": "0.9.1"
"min_version": "0.10.1"
},
"homepage_url": "https://github.com/MaiM-with-u/maibot",
"repository_url": "https://github.com/MaiM-with-u/maibot",

View File

@ -1,6 +1,7 @@
import json
from json_repair import repair_json
from typing import Tuple
import time
from src.common.logger import get_logger
from src.config.config import global_config
@ -79,16 +80,6 @@ class BuildRelationAction(BaseAction):
action_name = "build_relation"
action_description = "了解对于某人的记忆,并添加到你对对方的印象中"
# LLM判断提示词
llm_judge_prompt = """
判定是否需要使用关系动作添加对于某人的记忆
1. 对方与你的交互让你对其有新记忆
2. 对方有提到其个人信息包括喜好身份等等
3. 对方希望你记住对方的信息
请回答""""
"""
# 动作参数定义
action_parameters = {"person_name": "需要了解或记忆的人的名称", "impression": "需要了解的对某人的记忆或印象"}
@ -109,13 +100,17 @@ class BuildRelationAction(BaseAction):
try:
# 1. 获取构建关系的原因
impression = self.action_data.get("impression", "")
logger.info(f"{self.log_prefix} 添加记忆原因: {self.reasoning}")
logger.info(f"{self.log_prefix} 添加关系印象原因: {self.reasoning}")
person_name = self.action_data.get("person_name", "")
# 2. 获取目标用户信息
person = Person(person_name=person_name)
if not person.is_known:
logger.warning(f"{self.log_prefix} 用户 {person_name} 不存在,跳过添加记忆")
return False, f"用户 {person_name} 不存在,跳过添加记忆"
person.last_know = time.time()
person.know_times += 1
person.sync_to_database()
category_list = person.get_all_category()
if not category_list:
@ -195,6 +190,8 @@ class BuildRelationAction(BaseAction):
# 新记忆
person.memory_points.append(f"{category}:{new_memory}:1.0")
person.sync_to_database()
logger.info(f"{self.log_prefix}{person.person_name}新增记忆点: {new_memory}")
return True, f"{person.person_name}新增记忆点: {new_memory}"
elif memory_id and integrate_memory:
@ -204,12 +201,14 @@ class BuildRelationAction(BaseAction):
del_count = person.del_memory(category, memory_content)
if del_count > 0:
logger.info(f"{self.log_prefix} 删除记忆点: {memory_content}")
# logger.info(f"{self.log_prefix} 删除记忆点: {memory_content}")
memory_weight = get_weight_from_memory(memory)
person.memory_points.append(f"{category}:{integrate_memory}:{memory_weight + 1.0}")
person.sync_to_database()
logger.info(f"{self.log_prefix} 更新{person.person_name}的记忆点: {memory_content} -> {integrate_memory}")
return True, f"更新{person.person_name}的记忆点: {memory_content} -> {integrate_memory}"
else:

View File

@ -13,21 +13,16 @@ class TTSAction(BaseAction):
"""TTS语音转换动作处理类"""
# 激活设置
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_type = ActionActivationType.LLM_JUDGE
parallel_action = False
# 动作基本信息
action_name = "tts_action"
action_description = "将文本转换为语音进行播放,适用于需要语音输出的场景"
# 关键词配置 - Normal模式下使用关键词触发
activation_keywords = ["语音", "tts", "播报", "读出来", "语音播放", "", "朗读"]
keyword_case_sensitive = False
# 动作参数定义
action_parameters = {
"text": "需要转换为语音的文本内容,必填,内容应当适合语音播报,语句流畅、清晰",
"voice_text": "你想用语音表达的内容,这段内容将会以语音形式发出",
}
# 动作使用场景
@ -46,7 +41,7 @@ class TTSAction(BaseAction):
logger.info(f"{self.log_prefix} 执行TTS动作: {self.reasoning}")
# 获取要转换的文本
text = self.action_data.get("text")
text = self.action_data.get("voice_text")
if not text:
logger.error(f"{self.log_prefix} 执行TTS动作时未提供文本内容")

View File

@ -1,5 +1,5 @@
[inner]
version = "6.7.1"
version = "6.8.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请递增version的值
@ -59,19 +59,17 @@ expression_groups = [
[chat] #麦麦的聊天设置
talk_frequency = 0.5
# 麦麦活跃度,越高,麦麦回复越多范围0-1
# 麦麦活跃度,越高,麦麦越容易回复范围0-1
focus_value = 0.5
# 麦麦的专注度越高越容易持续连续对话可能消耗更多token, 范围0-1
mentioned_bot_reply = 1 # 提及时,回复概率增幅1为100%回复0为不额外增幅
at_bot_inevitable_reply = 1 # at时,回复概率增幅1为100%回复0为不额外增幅
max_context_size = 20 # 上下文长度
interest_rate_mode = "fast" #激活值计算模式可选fast或者accurate
planner_size = 2.5 # 副规划器大小越小麦麦的动作执行能力越精细但是消耗更多token调大可以缓解429类错误
mentioned_bot_inevitable_reply = true # 提及 bot 大概率回复
at_bot_inevitable_reply = true # @bot 或 提及bot 大概率回复
focus_value_adjust = [
["", "8:00,1", "12:00,0.8", "18:00,1", "01:00,0.3"],
["qq:114514:group", "12:20,0.6", "16:10,0.5", "20:10,0.8", "00:10,0.3"],
@ -102,22 +100,8 @@ talk_frequency_adjust = [
# - 后续元素是"时间,频率"格式,表示从该时间开始使用该活跃度,直到下一个时间点
# - 优先级:特定聊天流配置 > 全局配置 > 默认 talk_frequency
[relationship]
enable_relationship = true # 是否启用关系系统
relation_frequency = 1 # 关系频率,麦麦构建关系的频率
[message_receive]
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
ban_words = [
# "403","张三"
]
ban_msgs_regex = [
# 需要过滤的消息(原始消息)匹配的正则表达式,匹配到的消息将被过滤,若不了解正则表达式请勿修改
#"https?://[^\\s]+", # 匹配https链接
#"\\d{4}-\\d{2}-\\d{2}", # 匹配日期
]
[tool]
enable_tool = false # 是否在普通聊天中启用工具
@ -138,21 +122,30 @@ filtration_prompt = "符合公序良俗" # 表情包过滤要求,只有符合
[memory]
enable_memory = true # 是否启用记忆系统
memory_build_frequency = 1 # 记忆构建频率 越高,麦麦学习越多
memory_compress_rate = 0.1 # 记忆压缩率 控制记忆精简程度 建议保持默认,调高可以获得更多信息,但是冗余信息也会增多
forget_memory_interval = 3000 # 记忆遗忘间隔 单位秒 间隔越低,麦麦遗忘越频繁,记忆更精简,但更难学习
forget_memory_interval = 1500 # 记忆遗忘间隔 单位秒 间隔越低,麦麦遗忘越频繁,记忆更精简,但更难学习
memory_forget_time = 48 #多长时间后的记忆会被遗忘 单位小时
memory_forget_percentage = 0.008 # 记忆遗忘比例 控制记忆遗忘程度 越大遗忘越多 建议保持默认
enable_instant_memory = false # 是否启用即时记忆,测试功能,可能存在未知问题
#不希望记忆的词,已经记忆的不会受到影响,需要手动清理
memory_ban_words = [ "表情包", "图片", "回复", "聊天记录" ]
[voice]
enable_asr = false # 是否启用语音识别,启用后麦麦可以识别语音消息,启用该功能需要配置语音识别模型[model.voice]s
[message_receive]
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
ban_words = [
# "403","张三"
]
ban_msgs_regex = [
# 需要过滤的消息(原始消息)匹配的正则表达式,匹配到的消息将被过滤,若不了解正则表达式请勿修改
#"https?://[^\\s]+", # 匹配https链接
#"\\d{4}-\\d{2}-\\d{2}", # 匹配日期
]
[lpmm_knowledge] # lpmm知识库配置
enable = false # 是否启用lpmm知识库
rag_synonym_search_top_k = 10 # 同义词搜索TopK