mirror of https://github.com/Mai-with-u/MaiBot.git
ref:重构记忆检索流程,略微提高消耗,提高精度
parent
2b9975c48e
commit
32755987a0
|
|
@ -103,32 +103,21 @@ def init_memory_retrieval_prompt():
|
|||
你正在参与聊天,你需要搜集信息来回答问题,帮助你参与聊天。
|
||||
|
||||
**重要限制:**
|
||||
- 最大查询轮数:{max_iterations}轮(当前第{current_iteration}轮,剩余{remaining_iterations}轮)
|
||||
- 思考要简短,直接切入要点
|
||||
- 必须严格使用检索到的信息回答问题,不要编造信息
|
||||
|
||||
当前需要解答的问题:{question}
|
||||
已收集的信息:
|
||||
{collected_info}
|
||||
|
||||
**执行步骤:**
|
||||
**第一步:思考(Think)**
|
||||
在思考中分析:
|
||||
- 当前信息是否足够回答问题({question})?
|
||||
- **如果信息足够且能找到明确答案**,在思考中直接给出答案,格式为:found_answer(answer="你的答案内容")
|
||||
- **如果信息不足以解答问题,需要尝试搜集更多信息,进一步调用工具,进入第二步行动环节
|
||||
- **如果已有信息不足或无法找到答案,决定结束查询**,在思考中给出:not_enough_info(reason="结束查询的原因")
|
||||
|
||||
**第二步:行动(Action)**
|
||||
- 如果涉及过往事件,或者查询某个过去可能提到过的概念,或者某段时间发生的事件。可以使用聊天记录查询工具查询过往事件
|
||||
- 如果涉及人物,可以使用人物信息查询工具查询人物信息
|
||||
- 如果没有可靠信息,且查询时间充足,或者不确定查询类别,也可以使用lpmm知识库查询,作为辅助信息
|
||||
- 如果信息不足需要使用tool,说明需要查询什么,并输出为纯文本说明,然后调用相应工具查询(可并行调用多个工具)
|
||||
|
||||
**重要规则:**
|
||||
- **只有在检索到明确、有关的信息并得出答案时,才使用found_answer**
|
||||
- **如果信息不足、无法确定、找不到相关信息导致的无法回答问题,决定结束查询,必须使用not_enough_info,不要使用found_answer**
|
||||
- 答案必须在思考中给出,格式为 found_answer(answer="...") 或 not_enough_info(reason="...")
|
||||
**思考**
|
||||
- 你可以对查询思路给出简短的思考
|
||||
- 你必须给出使用什么工具进行查询
|
||||
""",
|
||||
name="memory_retrieval_react_prompt_head",
|
||||
)
|
||||
|
|
@ -325,6 +314,66 @@ def _match_jargon_from_text(chat_text: str, chat_id: str) -> List[str]:
|
|||
return list(matched.keys())
|
||||
|
||||
|
||||
def _log_conversation_messages(conversation_messages: List[Message], head_prompt: Optional[str] = None) -> None:
|
||||
"""输出对话消息列表的日志
|
||||
|
||||
Args:
|
||||
conversation_messages: 对话消息列表
|
||||
head_prompt: 第一条系统消息(head_prompt)的内容,可选
|
||||
"""
|
||||
if not global_config.debug.show_memory_prompt:
|
||||
return
|
||||
|
||||
log_lines = []
|
||||
|
||||
# 如果有head_prompt,先添加为第一条消息
|
||||
if head_prompt:
|
||||
msg_info = "\n[消息 1] 角色: System 内容类型: 文本\n========================================"
|
||||
msg_info += f"\n{head_prompt}"
|
||||
log_lines.append(msg_info)
|
||||
start_idx = 2
|
||||
else:
|
||||
start_idx = 1
|
||||
|
||||
if not conversation_messages and not head_prompt:
|
||||
return
|
||||
|
||||
for idx, msg in enumerate(conversation_messages, start_idx):
|
||||
role_name = msg.role.value if hasattr(msg.role, "value") else str(msg.role)
|
||||
|
||||
# 处理内容 - 显示完整内容,不截断
|
||||
if isinstance(msg.content, str):
|
||||
full_content = msg.content
|
||||
content_type = "文本"
|
||||
elif isinstance(msg.content, list):
|
||||
text_parts = [item for item in msg.content if isinstance(item, str)]
|
||||
image_count = len([item for item in msg.content if isinstance(item, tuple)])
|
||||
full_content = "".join(text_parts) if text_parts else ""
|
||||
content_type = f"混合({len(text_parts)}段文本, {image_count}张图片)"
|
||||
else:
|
||||
full_content = str(msg.content)
|
||||
content_type = "未知"
|
||||
|
||||
# 构建单条消息的日志信息
|
||||
msg_info = f"\n[消息 {idx}] 角色: {role_name} 内容类型: {content_type}\n========================================"
|
||||
|
||||
if full_content:
|
||||
msg_info += f"\n{full_content}"
|
||||
|
||||
if msg.tool_calls:
|
||||
msg_info += f"\n 工具调用: {len(msg.tool_calls)}个"
|
||||
for tool_call in msg.tool_calls:
|
||||
msg_info += f"\n - {tool_call}"
|
||||
|
||||
if msg.tool_call_id:
|
||||
msg_info += f"\n 工具调用ID: {msg.tool_call_id}"
|
||||
|
||||
log_lines.append(msg_info)
|
||||
|
||||
total_count = len(conversation_messages) + (1 if head_prompt else 0)
|
||||
logger.info(f"消息列表 (共{total_count}条):{''.join(log_lines)}")
|
||||
|
||||
|
||||
async def _react_agent_solve_question(
|
||||
question: str,
|
||||
chat_id: str,
|
||||
|
|
@ -358,6 +407,7 @@ async def _react_agent_solve_question(
|
|||
thinking_steps = []
|
||||
is_timeout = False
|
||||
conversation_messages: List[Message] = []
|
||||
last_head_prompt: Optional[str] = None # 保存最后一次使用的head_prompt
|
||||
|
||||
for iteration in range(max_iterations):
|
||||
# 检查超时
|
||||
|
|
@ -380,144 +430,41 @@ async def _react_agent_solve_question(
|
|||
remaining_iterations = max_iterations - current_iteration
|
||||
is_final_iteration = current_iteration >= max_iterations
|
||||
|
||||
if is_final_iteration:
|
||||
# 最后一次迭代,使用最终prompt
|
||||
tool_definitions = []
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代,问题: {question}|可用工具数量: 0(最后一次迭代,不提供工具调用)"
|
||||
)
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"memory_retrieval_react_final_prompt",
|
||||
bot_name=bot_name,
|
||||
time_now=time_now,
|
||||
question=question,
|
||||
collected_info=collected_info if collected_info else "暂无信息",
|
||||
current_iteration=current_iteration,
|
||||
remaining_iterations=remaining_iterations,
|
||||
max_iterations=max_iterations,
|
||||
)
|
||||
|
||||
if global_config.debug.show_memory_prompt:
|
||||
logger.info(f"ReAct Agent 第 {iteration + 1} 次Prompt: {prompt}")
|
||||
success, response, reasoning_content, model_name, tool_calls = await llm_api.generate_with_model_with_tools(
|
||||
prompt,
|
||||
model_config=model_config.model_task_config.tool_use,
|
||||
tool_options=tool_definitions,
|
||||
request_type="memory.react",
|
||||
)
|
||||
else:
|
||||
# 非最终迭代,使用head_prompt
|
||||
tool_definitions = tool_registry.get_tool_definitions()
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代,问题: {question}|可用工具数量: {len(tool_definitions)}"
|
||||
)
|
||||
|
||||
head_prompt = await global_prompt_manager.format_prompt(
|
||||
"memory_retrieval_react_prompt_head",
|
||||
bot_name=bot_name,
|
||||
time_now=time_now,
|
||||
question=question,
|
||||
collected_info=collected_info if collected_info else "",
|
||||
current_iteration=current_iteration,
|
||||
remaining_iterations=remaining_iterations,
|
||||
max_iterations=max_iterations,
|
||||
)
|
||||
|
||||
def message_factory(
|
||||
_client,
|
||||
*,
|
||||
_head_prompt: str = head_prompt,
|
||||
_conversation_messages: List[Message] = conversation_messages,
|
||||
) -> List[Message]:
|
||||
messages: List[Message] = []
|
||||
|
||||
system_builder = MessageBuilder()
|
||||
system_builder.set_role(RoleType.System)
|
||||
system_builder.add_text_content(_head_prompt)
|
||||
messages.append(system_builder.build())
|
||||
|
||||
messages.extend(_conversation_messages)
|
||||
|
||||
if global_config.debug.show_memory_prompt:
|
||||
# 优化日志展示 - 合并所有消息到一条日志
|
||||
log_lines = []
|
||||
for idx, msg in enumerate(messages, 1):
|
||||
role_name = msg.role.value if hasattr(msg.role, "value") else str(msg.role)
|
||||
|
||||
# 处理内容 - 显示完整内容,不截断
|
||||
if isinstance(msg.content, str):
|
||||
full_content = msg.content
|
||||
content_type = "文本"
|
||||
elif isinstance(msg.content, list):
|
||||
text_parts = [item for item in msg.content if isinstance(item, str)]
|
||||
image_count = len([item for item in msg.content if isinstance(item, tuple)])
|
||||
full_content = "".join(text_parts) if text_parts else ""
|
||||
content_type = f"混合({len(text_parts)}段文本, {image_count}张图片)"
|
||||
else:
|
||||
full_content = str(msg.content)
|
||||
content_type = "未知"
|
||||
|
||||
# 构建单条消息的日志信息
|
||||
msg_info = f"\n[消息 {idx}] 角色: {role_name} 内容类型: {content_type}\n========================================"
|
||||
|
||||
if full_content:
|
||||
msg_info += f"\n{full_content}"
|
||||
|
||||
if msg.tool_calls:
|
||||
msg_info += f"\n 工具调用: {len(msg.tool_calls)}个"
|
||||
for tool_call in msg.tool_calls:
|
||||
msg_info += f"\n - {tool_call}"
|
||||
|
||||
if msg.tool_call_id:
|
||||
msg_info += f"\n 工具调用ID: {msg.tool_call_id}"
|
||||
|
||||
log_lines.append(msg_info)
|
||||
|
||||
# 合并所有消息为一条日志输出
|
||||
logger.info(f"消息列表 (共{len(messages)}条):{''.join(log_lines)}")
|
||||
|
||||
return messages
|
||||
|
||||
(
|
||||
success,
|
||||
response,
|
||||
reasoning_content,
|
||||
model_name,
|
||||
tool_calls,
|
||||
) = await llm_api.generate_with_model_with_tools_by_message_factory(
|
||||
message_factory,
|
||||
model_config=model_config.model_task_config.tool_use,
|
||||
tool_options=tool_definitions,
|
||||
request_type="memory.react",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代 模型: {model_name} ,调用工具数量: {len(tool_calls) if tool_calls else 0} ,调用工具响应: {response}"
|
||||
# 每次迭代开始时,先评估当前信息是否足够回答问题
|
||||
evaluation_prompt = await global_prompt_manager.format_prompt(
|
||||
"memory_retrieval_react_final_prompt",
|
||||
bot_name=bot_name,
|
||||
time_now=time_now,
|
||||
question=question,
|
||||
collected_info=collected_info if collected_info else "暂无信息",
|
||||
current_iteration=current_iteration,
|
||||
remaining_iterations=remaining_iterations,
|
||||
max_iterations=max_iterations,
|
||||
)
|
||||
|
||||
if not success:
|
||||
logger.error(f"ReAct Agent LLM调用失败: {response}")
|
||||
break
|
||||
# if global_config.debug.show_memory_prompt:
|
||||
# logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 评估Prompt: {evaluation_prompt}")
|
||||
|
||||
assistant_message: Optional[Message] = None
|
||||
if tool_calls:
|
||||
assistant_builder = MessageBuilder()
|
||||
assistant_builder.set_role(RoleType.Assistant)
|
||||
if response and response.strip():
|
||||
assistant_builder.add_text_content(response)
|
||||
assistant_builder.set_tool_calls(tool_calls)
|
||||
assistant_message = assistant_builder.build()
|
||||
elif response and response.strip():
|
||||
assistant_builder = MessageBuilder()
|
||||
assistant_builder.set_role(RoleType.Assistant)
|
||||
assistant_builder.add_text_content(response)
|
||||
assistant_message = assistant_builder.build()
|
||||
eval_success, eval_response, eval_reasoning_content, eval_model_name, eval_tool_calls = await llm_api.generate_with_model_with_tools(
|
||||
evaluation_prompt,
|
||||
model_config=model_config.model_task_config.tool_use,
|
||||
tool_options=[], # 评估阶段不提供工具
|
||||
request_type="memory.react.eval",
|
||||
)
|
||||
|
||||
# 记录思考步骤
|
||||
step = {"iteration": iteration + 1, "thought": response, "actions": [], "observations": []}
|
||||
if not eval_success:
|
||||
logger.error(f"ReAct Agent 第 {iteration + 1} 次迭代 评估阶段 LLM调用失败: {eval_response}")
|
||||
# 评估失败,如果还有剩余迭代次数,尝试继续查询
|
||||
if not is_final_iteration:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
|
||||
# 优先从思考内容中提取found_answer或not_enough_info
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代 评估响应: {eval_response}"
|
||||
)
|
||||
|
||||
# 提取函数调用中参数的值,支持单引号和双引号
|
||||
def extract_quoted_content(text, func_name, param_name):
|
||||
"""从文本中提取函数调用中参数的值,支持单引号和双引号
|
||||
|
||||
|
|
@ -575,44 +522,147 @@ async def _react_agent_solve_question(
|
|||
|
||||
return None
|
||||
|
||||
# 从LLM的直接输出内容中提取found_answer或not_enough_info
|
||||
# 从评估响应中提取found_answer或not_enough_info
|
||||
found_answer_content = None
|
||||
not_enough_info_reason = None
|
||||
|
||||
# 只检查response(LLM的直接输出内容),不检查reasoning_content
|
||||
if response:
|
||||
found_answer_content = extract_quoted_content(response, "found_answer", "answer")
|
||||
if eval_response:
|
||||
found_answer_content = extract_quoted_content(eval_response, "found_answer", "answer")
|
||||
if not found_answer_content:
|
||||
not_enough_info_reason = extract_quoted_content(response, "not_enough_info", "reason")
|
||||
not_enough_info_reason = extract_quoted_content(eval_response, "not_enough_info", "reason")
|
||||
|
||||
# 如果从输出内容中找到了答案,直接返回
|
||||
# 如果找到答案,直接返回
|
||||
if found_answer_content:
|
||||
step["actions"].append({"action_type": "found_answer", "action_params": {"answer": found_answer_content}})
|
||||
step["observations"] = ["从LLM输出内容中检测到found_answer"]
|
||||
thinking_steps.append(step)
|
||||
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 找到关于问题{question}的答案: {found_answer_content}")
|
||||
eval_step = {
|
||||
"iteration": iteration + 1,
|
||||
"thought": f"[评估] {eval_response}",
|
||||
"actions": [{"action_type": "found_answer", "action_params": {"answer": found_answer_content}}],
|
||||
"observations": ["评估阶段检测到found_answer"]
|
||||
}
|
||||
thinking_steps.append(eval_step)
|
||||
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 评估阶段找到关于问题{question}的答案: {found_answer_content}")
|
||||
|
||||
# React完成时输出消息列表
|
||||
_log_conversation_messages(conversation_messages, last_head_prompt)
|
||||
|
||||
return True, found_answer_content, thinking_steps, False
|
||||
|
||||
# 如果评估为not_enough_info,且是最终迭代,返回not_enough_info
|
||||
if not_enough_info_reason:
|
||||
step["actions"].append(
|
||||
{"action_type": "not_enough_info", "action_params": {"reason": not_enough_info_reason}}
|
||||
)
|
||||
step["observations"] = ["从LLM输出内容中检测到not_enough_info"]
|
||||
thinking_steps.append(step)
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代 无法找到关于问题{question}的答案,原因: {not_enough_info_reason}"
|
||||
)
|
||||
return False, not_enough_info_reason, thinking_steps, False
|
||||
if is_final_iteration:
|
||||
eval_step = {
|
||||
"iteration": iteration + 1,
|
||||
"thought": f"[评估] {eval_response}",
|
||||
"actions": [{"action_type": "not_enough_info", "action_params": {"reason": not_enough_info_reason}}],
|
||||
"observations": ["评估阶段检测到not_enough_info"]
|
||||
}
|
||||
thinking_steps.append(eval_step)
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代 评估阶段判断信息不足: {not_enough_info_reason}"
|
||||
)
|
||||
|
||||
# React完成时输出消息列表
|
||||
_log_conversation_messages(conversation_messages, last_head_prompt)
|
||||
|
||||
return False, not_enough_info_reason, thinking_steps, False
|
||||
else:
|
||||
# 非最终迭代,信息不足,继续搜集信息
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代 评估阶段判断信息不足: {not_enough_info_reason},继续查询"
|
||||
)
|
||||
|
||||
# 如果是最终迭代但没有明确判断,视为not_enough_info
|
||||
if is_final_iteration:
|
||||
step["actions"].append(
|
||||
{"action_type": "not_enough_info", "action_params": {"reason": "已到达最后一次迭代,无法找到答案"}}
|
||||
)
|
||||
step["observations"] = ["已到达最后一次迭代,无法找到答案"]
|
||||
thinking_steps.append(step)
|
||||
eval_step = {
|
||||
"iteration": iteration + 1,
|
||||
"thought": f"[评估] {eval_response}",
|
||||
"actions": [{"action_type": "not_enough_info", "action_params": {"reason": "已到达最后一次迭代,无法找到答案"}}],
|
||||
"observations": ["已到达最后一次迭代,无法找到答案"]
|
||||
}
|
||||
thinking_steps.append(eval_step)
|
||||
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 已到达最后一次迭代,无法找到答案")
|
||||
|
||||
# React完成时输出消息列表
|
||||
_log_conversation_messages(conversation_messages, last_head_prompt)
|
||||
|
||||
return False, "已到达最后一次迭代,无法找到答案", thinking_steps, False
|
||||
|
||||
# 非最终迭代且信息不足,使用head_prompt决定调用哪些工具
|
||||
tool_definitions = tool_registry.get_tool_definitions()
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代,问题: {question}|可用工具数量: {len(tool_definitions)}"
|
||||
)
|
||||
|
||||
head_prompt = await global_prompt_manager.format_prompt(
|
||||
"memory_retrieval_react_prompt_head",
|
||||
bot_name=bot_name,
|
||||
time_now=time_now,
|
||||
question=question,
|
||||
collected_info=collected_info if collected_info else "",
|
||||
current_iteration=current_iteration,
|
||||
remaining_iterations=remaining_iterations,
|
||||
max_iterations=max_iterations,
|
||||
)
|
||||
last_head_prompt = head_prompt # 保存最后一次使用的head_prompt
|
||||
|
||||
def message_factory(
|
||||
_client,
|
||||
*,
|
||||
_head_prompt: str = head_prompt,
|
||||
_conversation_messages: List[Message] = conversation_messages,
|
||||
) -> List[Message]:
|
||||
messages: List[Message] = []
|
||||
|
||||
system_builder = MessageBuilder()
|
||||
system_builder.set_role(RoleType.System)
|
||||
system_builder.add_text_content(_head_prompt)
|
||||
messages.append(system_builder.build())
|
||||
|
||||
messages.extend(_conversation_messages)
|
||||
|
||||
return messages
|
||||
|
||||
(
|
||||
success,
|
||||
response,
|
||||
reasoning_content,
|
||||
model_name,
|
||||
tool_calls,
|
||||
) = await llm_api.generate_with_model_with_tools_by_message_factory(
|
||||
message_factory,
|
||||
model_config=model_config.model_task_config.tool_use,
|
||||
tool_options=tool_definitions,
|
||||
request_type="memory.react",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"ReAct Agent 第 {iteration + 1} 次迭代 模型: {model_name} ,调用工具数量: {len(tool_calls) if tool_calls else 0} ,调用工具响应: {response}"
|
||||
)
|
||||
|
||||
if not success:
|
||||
logger.error(f"ReAct Agent LLM调用失败: {response}")
|
||||
break
|
||||
|
||||
# 注意:这里不检查found_answer或not_enough_info,这些只在评估阶段(memory_retrieval_react_final_prompt)检查
|
||||
# memory_retrieval_react_prompt_head只用于决定调用哪些工具来搜集信息
|
||||
|
||||
assistant_message: Optional[Message] = None
|
||||
if tool_calls:
|
||||
assistant_builder = MessageBuilder()
|
||||
assistant_builder.set_role(RoleType.Assistant)
|
||||
if response and response.strip():
|
||||
assistant_builder.add_text_content(response)
|
||||
assistant_builder.set_tool_calls(tool_calls)
|
||||
assistant_message = assistant_builder.build()
|
||||
elif response and response.strip():
|
||||
assistant_builder = MessageBuilder()
|
||||
assistant_builder.set_role(RoleType.Assistant)
|
||||
assistant_builder.add_text_content(response)
|
||||
assistant_message = assistant_builder.build()
|
||||
|
||||
# 记录思考步骤
|
||||
step = {"iteration": iteration + 1, "thought": response, "actions": [], "observations": []}
|
||||
|
||||
if assistant_message:
|
||||
conversation_messages.append(assistant_message)
|
||||
|
||||
|
|
@ -624,21 +674,16 @@ async def _react_agent_solve_question(
|
|||
|
||||
# 处理工具调用
|
||||
if not tool_calls:
|
||||
# 没有工具调用,说明LLM在思考中已经给出了答案(已在前面检查),或者需要继续查询
|
||||
# 如果思考中没有答案,说明需要继续查询或等待下一轮
|
||||
# 如果没有工具调用,记录思考过程,继续下一轮迭代(下一轮会再次评估)
|
||||
if response and response.strip():
|
||||
# 如果响应不为空,记录思考过程,继续下一轮迭代
|
||||
step["observations"] = [f"思考完成,但未调用工具。响应: {response}"]
|
||||
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 思考完成但未调用工具: {response}")
|
||||
# 继续下一轮迭代,让LLM有机会在思考中给出found_answer或继续查询
|
||||
collected_info += f"思考: {response}"
|
||||
thinking_steps.append(step)
|
||||
continue
|
||||
else:
|
||||
logger.warning(f"ReAct Agent 第 {iteration + 1} 次迭代 无工具调用且无响应")
|
||||
step["observations"] = ["无响应且无工具调用"]
|
||||
thinking_steps.append(step)
|
||||
break
|
||||
thinking_steps.append(step)
|
||||
continue
|
||||
|
||||
# 处理工具调用
|
||||
tool_tasks = []
|
||||
|
|
@ -655,12 +700,10 @@ async def _react_agent_solve_question(
|
|||
tool = tool_registry.get_tool(tool_name)
|
||||
if tool:
|
||||
# 准备工具参数(需要添加chat_id如果工具需要)
|
||||
tool_params = tool_args.copy()
|
||||
|
||||
# 如果工具函数签名需要chat_id,添加它
|
||||
import inspect
|
||||
|
||||
sig = inspect.signature(tool.execute_func)
|
||||
tool_params = tool_args.copy()
|
||||
if "chat_id" in sig.parameters:
|
||||
tool_params["chat_id"] = chat_id
|
||||
|
||||
|
|
@ -717,7 +760,6 @@ async def _react_agent_solve_question(
|
|||
if jargon_info:
|
||||
collected_info += f"\n{jargon_info}\n"
|
||||
logger.info(f"工具输出触发黑话解析: {new_concepts}")
|
||||
# logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 工具 {i+1} 执行结果: {observation_text}")
|
||||
|
||||
thinking_steps.append(step)
|
||||
|
||||
|
|
@ -732,6 +774,10 @@ async def _react_agent_solve_question(
|
|||
logger.warning("ReAct Agent超时,直接视为not_enough_info")
|
||||
else:
|
||||
logger.warning("ReAct Agent达到最大迭代次数,直接视为not_enough_info")
|
||||
|
||||
# React完成时输出消息列表
|
||||
_log_conversation_messages(conversation_messages, last_head_prompt)
|
||||
|
||||
return False, "未找到相关信息", thinking_steps, is_timeout
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -15,17 +15,14 @@ logger = get_logger("memory_retrieval_tools")
|
|||
|
||||
|
||||
async def search_chat_history(
|
||||
chat_id: str, keyword: Optional[str] = None, participant: Optional[str] = None, fuzzy: bool = True
|
||||
chat_id: str, keyword: Optional[str] = None, participant: Optional[str] = None
|
||||
) -> str:
|
||||
"""根据关键词或参与人查询记忆,返回匹配的记忆id、记忆标题theme和关键词keywords
|
||||
|
||||
Args:
|
||||
chat_id: 聊天ID
|
||||
keyword: 关键词(可选,支持多个关键词,可用空格、逗号等分隔)
|
||||
keyword: 关键词(可选,支持多个关键词,可用空格、逗号等分隔。匹配规则:如果关键词数量<=2,必须全部匹配;如果关键词数量>2,允许n-1个关键词匹配)
|
||||
participant: 参与人昵称(可选)
|
||||
fuzzy: 是否使用模糊匹配模式(默认True)
|
||||
- True: 模糊匹配,只要包含任意一个关键词即匹配(OR关系)
|
||||
- False: 全匹配,必须包含所有关键词才匹配(AND关系)
|
||||
|
||||
Returns:
|
||||
str: 查询结果,包含记忆id、theme和keywords
|
||||
|
|
@ -96,31 +93,28 @@ async def search_chat_history(
|
|||
except (json.JSONDecodeError, TypeError, ValueError):
|
||||
pass
|
||||
|
||||
# 根据匹配模式检查关键词
|
||||
if fuzzy:
|
||||
# 模糊匹配:只要包含任意一个关键词即匹配(OR关系)
|
||||
for kw in keywords_lower:
|
||||
if (
|
||||
kw in theme
|
||||
or kw in summary
|
||||
or kw in original_text
|
||||
or any(kw in k for k in record_keywords_list)
|
||||
):
|
||||
keyword_matched = True
|
||||
break
|
||||
# 有容错的全匹配:如果关键词数量>2,允许n-1个关键词匹配;否则必须全部匹配
|
||||
matched_count = 0
|
||||
for kw in keywords_lower:
|
||||
kw_matched = (
|
||||
kw in theme
|
||||
or kw in summary
|
||||
or kw in original_text
|
||||
or any(kw in k for k in record_keywords_list)
|
||||
)
|
||||
if kw_matched:
|
||||
matched_count += 1
|
||||
|
||||
# 计算需要匹配的关键词数量
|
||||
total_keywords = len(keywords_lower)
|
||||
if total_keywords > 2:
|
||||
# 关键词数量>2,允许n-1个关键词匹配
|
||||
required_matches = total_keywords - 1
|
||||
else:
|
||||
# 全匹配:必须包含所有关键词才匹配(AND关系)
|
||||
keyword_matched = True
|
||||
for kw in keywords_lower:
|
||||
kw_matched = (
|
||||
kw in theme
|
||||
or kw in summary
|
||||
or kw in original_text
|
||||
or any(kw in k for k in record_keywords_list)
|
||||
)
|
||||
if not kw_matched:
|
||||
keyword_matched = False
|
||||
break
|
||||
# 关键词数量<=2,必须全部匹配
|
||||
required_matches = total_keywords
|
||||
|
||||
keyword_matched = matched_count >= required_matches
|
||||
|
||||
# 两者都匹配(如果同时有participant和keyword,需要两者都匹配;如果只有一个条件,只需要该条件匹配)
|
||||
matched = participant_matched and keyword_matched
|
||||
|
|
@ -134,8 +128,12 @@ async def search_chat_history(
|
|||
return f"未找到包含关键词'{keywords_str}'且参与人包含'{participant}'的聊天记录"
|
||||
elif keyword:
|
||||
keywords_str = "、".join(parse_keywords_string(keyword))
|
||||
match_mode = "包含任意一个关键词" if fuzzy else "包含所有关键词"
|
||||
return f"未找到{match_mode}'{keywords_str}'的聊天记录"
|
||||
keywords_list = parse_keywords_string(keyword)
|
||||
if len(keywords_list) > 2:
|
||||
required_count = len(keywords_list) - 1
|
||||
return f"未找到包含至少{required_count}个关键词(共{len(keywords_list)}个)'{keywords_str}'的聊天记录"
|
||||
else:
|
||||
return f"未找到包含所有关键词'{keywords_str}'的聊天记录"
|
||||
elif participant:
|
||||
return f"未找到参与人包含'{participant}'的聊天记录"
|
||||
else:
|
||||
|
|
@ -299,12 +297,12 @@ def register_tool():
|
|||
# 注册工具1:搜索记忆
|
||||
register_memory_retrieval_tool(
|
||||
name="search_chat_history",
|
||||
description="根据关键词或参与人查询记忆,返回匹配的记忆id、记忆标题theme和关键词keywords。用于快速搜索和定位相关记忆。",
|
||||
description="根据关键词或参与人查询记忆,返回匹配的记忆id、记忆标题theme和关键词keywords。用于快速搜索和定位相关记忆。匹配规则:如果关键词数量<=2,必须全部匹配;如果关键词数量>2,允许n-1个关键词匹配(容错匹配)。",
|
||||
parameters=[
|
||||
{
|
||||
"name": "keyword",
|
||||
"type": "string",
|
||||
"description": "关键词(可选,支持多个关键词,可用空格、逗号、斜杠等分隔,如:'麦麦 百度网盘' 或 '麦麦,百度网盘'。用于在主题、关键词、概括、原文中搜索)",
|
||||
"description": "关键词(可选,支持多个关键词,可用空格、逗号、斜杠等分隔,如:'麦麦 百度网盘' 或 '麦麦,百度网盘'。用于在主题、关键词、概括、原文中搜索。匹配规则:如果关键词数量<=2,必须全部匹配;如果关键词数量>2,允许n-1个关键词匹配)",
|
||||
"required": False,
|
||||
},
|
||||
{
|
||||
|
|
@ -313,12 +311,6 @@ def register_tool():
|
|||
"description": "参与人昵称(可选),用于查询包含该参与人的记忆",
|
||||
"required": False,
|
||||
},
|
||||
{
|
||||
"name": "fuzzy",
|
||||
"type": "boolean",
|
||||
"description": "是否使用模糊匹配模式(默认True)。True表示模糊匹配(只要包含任意一个关键词即匹配,OR关系),False表示全匹配(必须包含所有关键词才匹配,AND关系)",
|
||||
"required": False,
|
||||
},
|
||||
],
|
||||
execute_func=search_chat_history,
|
||||
)
|
||||
|
|
|
|||
Loading…
Reference in New Issue