diff --git a/plugins/hello_world_plugin/plugin.py b/plugins/hello_world_plugin/plugin.py
index 072dcb9a..7fb897fa 100644
--- a/plugins/hello_world_plugin/plugin.py
+++ b/plugins/hello_world_plugin/plugin.py
@@ -14,6 +14,7 @@ from src.plugin_system import (
MaiMessages,
ToolParamType,
ReplyContentType,
+ emoji_api,
)
from src.config.config import global_config
@@ -181,7 +182,26 @@ class ForwardMessages(BaseEventHandler):
raise ValueError("转发消息失败")
self.messages = []
return True, True, None, None, None
+class RandomEmojis(BaseCommand):
+ command_name = "random_emojis"
+ command_description = "发送多张随机表情包"
+ command_pattern = r"^/random_emojis$"
+ async def execute(self):
+ emojis = await emoji_api.get_random(5)
+ if not emojis:
+ return False, "未找到表情包", False
+ emoji_base64_list = []
+ for emoji in emojis:
+ emoji_base64_list.append(emoji[0])
+ return await self.forward_images(emoji_base64_list)
+
+ async def forward_images(self, images: List[str]):
+ """
+ 把多张图片用合并转发的方式发给用户
+ """
+ success = await self.send_forward([("0", "神秘用户", [(ReplyContentType.IMAGE, img)]) for img in images])
+ return (True, "已发送随机表情包", True) if success else (False, "发送随机表情包失败", False)
# ===== 插件注册 =====
@@ -225,6 +245,7 @@ class HelloWorldPlugin(BasePlugin):
(TimeCommand.get_command_info(), TimeCommand),
(PrintMessage.get_handler_info(), PrintMessage),
(ForwardMessages.get_handler_info(), ForwardMessages),
+ (RandomEmojis.get_command_info(), RandomEmojis),
]
diff --git a/src/llm_models/utils_model.py b/src/llm_models/utils_model.py
index a5e1a615..8bb35ef0 100644
--- a/src/llm_models/utils_model.py
+++ b/src/llm_models/utils_model.py
@@ -4,7 +4,7 @@ import time
from enum import Enum
from rich.traceback import install
-from typing import Tuple, List, Dict, Optional, Callable, Any
+from typing import Tuple, List, Dict, Optional, Callable, Any, Set
import traceback
from src.common.logger import get_logger
@@ -82,9 +82,7 @@ class LLMRequest:
message_builder = MessageBuilder()
message_builder.add_text_content(prompt)
message_builder.add_image_content(
- image_base64=image_base64,
- image_format=image_format,
- support_formats=client.get_support_image_formats()
+ image_base64=image_base64, image_format=image_format, support_formats=client.get_support_image_formats()
)
return [message_builder.build()]
@@ -145,7 +143,7 @@ class LLMRequest:
(Tuple[str, str, str, Optional[List[ToolCall]]]): 响应内容、推理内容、模型名称、工具调用列表
"""
start_time = time.time()
-
+
def message_factory(client: BaseClient) -> List[Message]:
message_builder = MessageBuilder()
message_builder.add_text_content(prompt)
@@ -177,7 +175,7 @@ class LLMRequest:
endpoint="/chat/completions",
time_cost=time.time() - start_time,
)
- return content, (reasoning_content, model_info.name, tool_calls)
+ return content or "", (reasoning_content, model_info.name, tool_calls)
async def get_embedding(self, embedding_input: str) -> Tuple[List[float], str]:
"""
@@ -206,7 +204,7 @@ class LLMRequest:
raise RuntimeError("获取embedding失败")
return embedding, model_info.name
- def _select_model(self, exclude_models: set = None) -> Tuple[ModelInfo, APIProvider, BaseClient]:
+ def _select_model(self, exclude_models: Optional[Set[str]] = None) -> Tuple[ModelInfo, APIProvider, BaseClient]:
"""
根据总tokens和惩罚值选择的模型
"""
@@ -224,7 +222,7 @@ class LLMRequest:
)
model_info = model_config.get_model_info(least_used_model_name)
api_provider = model_config.get_provider(model_info.api_provider)
- force_new_client = (self.request_type == "embedding")
+ force_new_client = self.request_type == "embedding"
client = client_registry.get_client_class_instance(api_provider, force_new=force_new_client)
logger.debug(f"选择请求模型: {model_info.name}")
total_tokens, penalty, usage_penalty = self.model_usage[model_info.name]
@@ -246,13 +244,13 @@ class LLMRequest:
max_tokens: Optional[int],
embedding_input: str | None,
audio_base64: str | None,
- compressed_messages: Optional[List[Message]] = None,
) -> APIResponse:
"""
在单个模型上执行请求,包含针对临时错误的重试逻辑。
如果成功,返回APIResponse。如果失败(重试耗尽或硬错误),则抛出ModelAttemptFailed异常。
"""
retry_remain = api_provider.max_retry
+ compressed_messages: Optional[List[Message]] = None
while retry_remain > 0:
try:
@@ -299,7 +297,9 @@ class LLMRequest:
logger.error(f"模型 '{model_info.name}' 在遇到 {e.status_code} 错误并用尽重试次数后仍然失败。")
raise ModelAttemptFailed(f"模型 '{model_info.name}' 重试耗尽", original_exception=e) from e
- logger.warning(f"模型 '{model_info.name}' 遇到可重试的HTTP错误: {str(e)}。剩余重试次数: {retry_remain}")
+ logger.warning(
+ f"模型 '{model_info.name}' 遇到可重试的HTTP错误: {str(e)}。剩余重试次数: {retry_remain}"
+ )
await asyncio.sleep(api_provider.retry_interval)
continue
@@ -315,8 +315,8 @@ class LLMRequest:
raise ModelAttemptFailed(f"模型 '{model_info.name}' 遇到硬错误", original_exception=e) from e
except Exception as e:
- logger.error(traceback.format_exc())
-
+ logger.error(traceback.format_exc())
+
logger.warning(f"模型 '{model_info.name}' 遇到未知的不可重试错误: {str(e)}")
raise ModelAttemptFailed(f"模型 '{model_info.name}' 遇到硬错误", original_exception=e) from e
@@ -338,12 +338,11 @@ class LLMRequest:
"""
调度器函数,负责模型选择、故障切换。
"""
- failed_models_this_request = set()
+ failed_models_this_request: Set[str] = set()
max_attempts = len(self.model_for_task.model_list)
last_exception: Optional[Exception] = None
- compressed_messages: Optional[List[Message]] = None
- for _attempt in range(max_attempts):
+ for _ in range(max_attempts):
model_info, api_provider, client = self._select_model(exclude_models=failed_models_this_request)
message_list = []
@@ -352,7 +351,10 @@ class LLMRequest:
try:
response = await self._attempt_request_on_model(
- model_info, api_provider, client, request_type,
+ model_info,
+ api_provider,
+ client,
+ request_type,
message_list=message_list,
tool_options=tool_options,
response_format=response_format,
@@ -362,7 +364,6 @@ class LLMRequest:
max_tokens=max_tokens,
embedding_input=embedding_input,
audio_base64=audio_base64,
- compressed_messages=compressed_messages,
)
return response, model_info
@@ -430,4 +431,4 @@ class LLMRequest:
match = re.search(r"(?:)?(.*?)", content, re.DOTALL)
content = re.sub(r"(?:)?.*?", "", content, flags=re.DOTALL, count=1).strip()
reasoning = match[1].strip() if match else ""
- return content, reasoning
\ No newline at end of file
+ return content, reasoning