better:优化错别字生成和分段

pull/1354/head
SengokuCola 2025-11-10 01:13:02 +08:00
parent 70cffcc387
commit 10cd2474af
2 changed files with 77 additions and 41 deletions

View File

@ -221,13 +221,13 @@ def split_into_sentences_w_remove_punctuation(text: str) -> list[str]:
while i < len(text):
char = text[i]
if char in separators:
# 检查分割条件:如果分隔符左右都是英文字母,则不分割
# 检查分割条件:如果空格左右都是英文字母,则不分割(仅对空格应用此规则)
can_split = True
if 0 < i < len(text) - 1:
prev_char = text[i - 1]
next_char = text[i + 1]
# if is_english_letter(prev_char) and is_english_letter(next_char) and char == ' ': # 原计划只对空格应用此规则,现应用于所有分隔符
if is_english_letter(prev_char) and is_english_letter(next_char):
# 只对空格应用"不分割两个英文之间的空格"规则
if char == ' ' and is_english_letter(prev_char) and is_english_letter(next_char):
can_split = False
if can_split:
@ -388,9 +388,16 @@ def process_llm_response(text: str, enable_splitter: bool = True, enable_chinese
for sentence in split_sentences:
if global_config.chinese_typo.enable and enable_chinese_typo:
typoed_text, typo_corrections = typo_generator.create_typo_sentence(sentence)
sentences.append(typoed_text)
if typo_corrections:
sentences.append(typo_corrections)
# 50%概率新增正确字/词50%概率用正确分句替换错别字分句
if random.random() < 0.5:
sentences.append(typoed_text)
sentences.append(typo_corrections)
else:
# 用正确的分句替换错别字分句
sentences.append(sentence)
else:
sentences.append(typoed_text)
else:
sentences.append(sentence)

View File

@ -1,6 +1,7 @@
import time
import json
import re
import random
from typing import List, Dict, Any, Optional, Tuple
from src.common.logger import get_logger
from src.config.config import global_config, model_config
@ -63,8 +64,7 @@ def init_memory_retrieval_prompt():
# 第二步ReAct Agent prompt工具描述会在运行时动态生成
Prompt(
"""
你是一个记忆检索助手需要通过思考(Think)行动(Action)观察(Observation)的循环来回答问题
"""你需要通过思考(Think)、行动(Action)、观察(Observation)的循环来回答问题。
当前问题{question}
已收集的信息
@ -77,14 +77,13 @@ def init_memory_retrieval_prompt():
```json
{{
"thought": "你的思考过程,分析当前情况,决定下一步行动",
"action": "要执行的动作,格式为:工具名(参数)",
"action_type": {action_types_list},
"action_params": {{参数名: 参数值}} null
}}
```
你可以选择以下动作
1. 如果已经收集到足够的信息可以回答问题请设置action_type为"final_answer"并在thought中说明答案
1. 如果已经收集到足够的信息可以回答问题请设置action_type为"final_answer"并在thought中说明答案除非明确找到答案否则不要设置为final_answer
2. 如果经过多次查询后确认无法找到相关信息或答案请设置action_type为"no_answer"并在thought中说明原因
请只输出JSON不要输出其他内容
@ -341,17 +340,18 @@ def _query_thinking_back(chat_id: str, question: str) -> Optional[Tuple[bool, st
question: 问题
Returns:
Optional[Tuple[bool, str]]: 如果找到答案返回(True, answer)否则返回None
Optional[Tuple[bool, str]]: 如果找到记录返回(found_answer, answer)否则返回None
found_answer: 是否找到答案True表示found_answer=1False表示found_answer=0
answer: 答案内容
"""
try:
# 查询相同chat_id和问题且found_answer为True的记录
# 按更新时间倒序,获取最新的答案
# 查询相同chat_id和问题的所有记录包括found_answer为0和1的
# 按更新时间倒序,获取最新的记录
records = (
ThinkingBack.select()
.where(
(ThinkingBack.chat_id == chat_id) &
(ThinkingBack.question == question) &
(ThinkingBack.found_answer == 1)
(ThinkingBack.question == question)
)
.order_by(ThinkingBack.update_time.desc())
.limit(1)
@ -359,8 +359,10 @@ def _query_thinking_back(chat_id: str, question: str) -> Optional[Tuple[bool, st
if records.exists():
record = records.get()
logger.info(f"在thinking_back中找到现成答案问题: {question[:50]}...")
return True, record.answer or ""
found_answer = bool(record.found_answer)
answer = record.answer or ""
logger.info(f"在thinking_back中找到记录问题: {question[:50]}...found_answer: {found_answer}")
return found_answer, answer
return None
@ -503,34 +505,61 @@ async def build_memory_retrieval_prompt(
# 先检查thinking_back数据库中是否有现成答案
cached_result = _query_thinking_back(chat_id, question)
should_requery = False
if cached_result:
found_answer, answer = cached_result
cached_found_answer, cached_answer = cached_result
# 根据found_answer的值决定是否重新查询
if cached_found_answer: # found_answer == 1 (True)
# found_answer == 120%概率重新查询
if random.random() < 0.2:
should_requery = True
logger.info(f"found_answer=1触发20%概率重新查询,问题: {question[:50]}...")
else:
# 使用缓存答案
if cached_answer:
logger.info(f"从thinking_back缓存中获取答案found_answer=1问题: {question[:50]}...")
all_results.append(f"问题:{question}\n答案:{cached_answer}")
continue # 跳过ReAct Agent查询
else: # found_answer == 0 (False)
# found_answer == 040%概率重新查询
if random.random() < 0.4:
should_requery = True
logger.info(f"found_answer=0触发40%概率重新查询,问题: {question[:50]}...")
else:
# 使用缓存答案即使found_answer=0也可能有部分答案
if cached_answer:
logger.info(f"从thinking_back缓存中获取答案found_answer=0问题: {question[:50]}...")
all_results.append(f"问题:{question}\n答案:{cached_answer}")
continue # 跳过ReAct Agent查询
# 如果没有缓存答案或需要重新查询使用ReAct Agent查询
if not cached_result or should_requery:
if should_requery:
logger.info(f"概率触发重新查询使用ReAct Agent查询问题: {question[:50]}...")
else:
logger.info(f"未找到缓存答案使用ReAct Agent查询问题: {question[:50]}...")
found_answer, answer, thinking_steps = await _react_agent_solve_question(
question=question,
chat_id=chat_id,
max_iterations=5,
timeout=30.0
)
# 存储到数据库
_store_thinking_back(
chat_id=chat_id,
question=question,
context=message, # 只存储前500字符作为上下文
found_answer=found_answer,
answer=answer,
thinking_steps=thinking_steps
)
if found_answer and answer:
logger.info(f"从thinking_back缓存中获取答案问题: {question[:50]}...")
all_results.append(f"问题:{question}\n答案:{answer}")
continue # 跳过ReAct Agent查询
# 如果没有缓存答案使用ReAct Agent查询
logger.info(f"未找到缓存答案使用ReAct Agent查询问题: {question[:50]}...")
found_answer, answer, thinking_steps = await _react_agent_solve_question(
question=question,
chat_id=chat_id,
max_iterations=5,
timeout=30.0
)
# 存储到数据库
_store_thinking_back(
chat_id=chat_id,
question=question,
context=message, # 只存储前500字符作为上下文
found_answer=found_answer,
answer=answer,
thinking_steps=thinking_steps
)
if found_answer and answer:
all_results.append(f"问题:{question}\n答案:{answer}")
end_time = time.time()