mirror of https://github.com/Mai-with-u/MaiBot.git
feat:新的记忆系统,deepthink插件,修复平行动作
parent
5cc1e56904
commit
0cd39476d8
|
|
@ -323,6 +323,8 @@ run_pet.bat
|
||||||
!/plugins/hello_world_plugin
|
!/plugins/hello_world_plugin
|
||||||
!/plugins/emoji_manage_plugin
|
!/plugins/emoji_manage_plugin
|
||||||
!/plugins/take_picture_plugin
|
!/plugins/take_picture_plugin
|
||||||
|
!/plugins/deep_think
|
||||||
|
!/plugins/__init__.py
|
||||||
|
|
||||||
config.toml
|
config.toml
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,34 @@
|
||||||
|
{
|
||||||
|
"manifest_version": 1,
|
||||||
|
"name": "Deep Think插件 (Deep Think Actions)",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"description": "可以深度思考",
|
||||||
|
"author": {
|
||||||
|
"name": "SengokuCola",
|
||||||
|
"url": "https://github.com/MaiM-with-u"
|
||||||
|
},
|
||||||
|
"license": "GPL-v3.0-or-later",
|
||||||
|
|
||||||
|
"host_application": {
|
||||||
|
"min_version": "0.11.0"
|
||||||
|
},
|
||||||
|
"homepage_url": "https://github.com/MaiM-with-u/maibot",
|
||||||
|
"repository_url": "https://github.com/MaiM-with-u/maibot",
|
||||||
|
"keywords": ["deep", "think", "action", "built-in"],
|
||||||
|
"categories": ["Deep Think"],
|
||||||
|
|
||||||
|
"default_locale": "zh-CN",
|
||||||
|
"locales_path": "_locales",
|
||||||
|
|
||||||
|
"plugin_info": {
|
||||||
|
"is_built_in": true,
|
||||||
|
"plugin_type": "action_provider",
|
||||||
|
"components": [
|
||||||
|
{
|
||||||
|
"type": "action",
|
||||||
|
"name": "deep_think",
|
||||||
|
"description": "发送深度思考"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,102 @@
|
||||||
|
from typing import List, Tuple, Type, Any
|
||||||
|
|
||||||
|
# 导入新插件系统
|
||||||
|
from src.plugin_system import BasePlugin, register_plugin, ComponentInfo
|
||||||
|
from src.plugin_system.base.config_types import ConfigField
|
||||||
|
from src.person_info.person_info import Person
|
||||||
|
from src.plugin_system.base.base_tool import BaseTool, ToolParamType
|
||||||
|
|
||||||
|
# 导入依赖的系统组件
|
||||||
|
from src.common.logger import get_logger
|
||||||
|
|
||||||
|
from src.plugins.built_in.relation.relation import BuildRelationAction
|
||||||
|
from src.plugin_system.apis import llm_api
|
||||||
|
|
||||||
|
logger = get_logger("relation_actions")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class DeepThinkTool(BaseTool):
|
||||||
|
"""获取用户信息"""
|
||||||
|
|
||||||
|
name = "deep_think"
|
||||||
|
description = "深度思考,对某个问题进行全面且深入的思考,当面临复杂环境或重要问题时,使用此获得更好的解决方案"
|
||||||
|
parameters = [
|
||||||
|
("question", ToolParamType.STRING, "需要思考的问题,越具体越好", True, None),
|
||||||
|
]
|
||||||
|
|
||||||
|
available_for_llm = True
|
||||||
|
|
||||||
|
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
|
||||||
|
"""执行比较两个数的大小
|
||||||
|
|
||||||
|
Args:
|
||||||
|
function_args: 工具参数
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: 工具执行结果
|
||||||
|
"""
|
||||||
|
question: str = function_args.get("question") # type: ignore
|
||||||
|
|
||||||
|
print(f"question: {question}")
|
||||||
|
|
||||||
|
prompt = f"""
|
||||||
|
请你思考以下问题,以简洁的一段话回答:
|
||||||
|
{question}
|
||||||
|
"""
|
||||||
|
|
||||||
|
models = llm_api.get_available_models()
|
||||||
|
chat_model_config = models.get("replyer") # 使用字典访问方式
|
||||||
|
|
||||||
|
success, thinking_result, _, _ = await llm_api.generate_with_model(
|
||||||
|
prompt, model_config=chat_model_config, request_type="deep_think"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"thinking_result: {thinking_result}")
|
||||||
|
|
||||||
|
thinking_result =f"思考结果:{thinking_result}\n**注意** 因为你进行了深度思考,最后的回复内容可以回复的长一些,更加详细一些,不用太简洁。\n"
|
||||||
|
|
||||||
|
return {"content": thinking_result}
|
||||||
|
|
||||||
|
|
||||||
|
@register_plugin
|
||||||
|
class DeepThinkPlugin(BasePlugin):
|
||||||
|
"""关系动作插件
|
||||||
|
|
||||||
|
系统内置插件,提供基础的聊天交互功能:
|
||||||
|
- Reply: 回复动作
|
||||||
|
- NoReply: 不回复动作
|
||||||
|
- Emoji: 表情动作
|
||||||
|
|
||||||
|
注意:插件基本信息优先从_manifest.json文件中读取
|
||||||
|
"""
|
||||||
|
|
||||||
|
# 插件基本信息
|
||||||
|
plugin_name: str = "deep_think" # 内部标识符
|
||||||
|
enable_plugin: bool = True
|
||||||
|
dependencies: list[str] = [] # 插件依赖列表
|
||||||
|
python_dependencies: list[str] = [] # Python包依赖列表
|
||||||
|
config_file_name: str = "config.toml"
|
||||||
|
|
||||||
|
# 配置节描述
|
||||||
|
config_section_descriptions = {
|
||||||
|
"plugin": "插件启用配置",
|
||||||
|
"components": "核心组件启用配置",
|
||||||
|
}
|
||||||
|
|
||||||
|
# 配置Schema定义
|
||||||
|
config_schema: dict = {
|
||||||
|
"plugin": {
|
||||||
|
"enabled": ConfigField(type=bool, default=False, description="是否启用插件"),
|
||||||
|
"config_version": ConfigField(type=str, default="2.0.0", description="配置文件版本"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
|
||||||
|
"""返回插件包含的组件列表"""
|
||||||
|
|
||||||
|
# --- 根据配置注册组件 ---
|
||||||
|
components = []
|
||||||
|
components.append((DeepThinkTool.get_tool_info(), DeepThinkTool))
|
||||||
|
|
||||||
|
return components
|
||||||
|
|
@ -427,7 +427,7 @@ class ExpressionLearner:
|
||||||
chat_str=random_msg_str,
|
chat_str=random_msg_str,
|
||||||
)
|
)
|
||||||
|
|
||||||
print(f"random_msg_str:{random_msg_str}")
|
# print(f"random_msg_str:{random_msg_str}")
|
||||||
logger.info(f"学习{type_str}的prompt: {prompt}")
|
logger.info(f"学习{type_str}的prompt: {prompt}")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
|
||||||
|
|
@ -25,6 +25,7 @@ from src.plugin_system.core import events_manager
|
||||||
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
|
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
|
||||||
from src.mais4u.mai_think import mai_thinking_manager
|
from src.mais4u.mai_think import mai_thinking_manager
|
||||||
from src.mais4u.s4u_config import s4u_config
|
from src.mais4u.s4u_config import s4u_config
|
||||||
|
from src.chat.memory_system.Memory_chest import global_memory_chest
|
||||||
from src.chat.utils.chat_message_builder import (
|
from src.chat.utils.chat_message_builder import (
|
||||||
build_readable_messages_with_id,
|
build_readable_messages_with_id,
|
||||||
get_raw_msg_before_timestamp_with_chat,
|
get_raw_msg_before_timestamp_with_chat,
|
||||||
|
|
@ -102,6 +103,7 @@ class HeartFChatting:
|
||||||
self.talk_threshold = global_config.chat.talk_value
|
self.talk_threshold = global_config.chat.talk_value
|
||||||
|
|
||||||
self.no_reply_until_call = False
|
self.no_reply_until_call = False
|
||||||
|
|
||||||
|
|
||||||
async def start(self):
|
async def start(self):
|
||||||
"""检查是否需要启动主循环,如果未激活则启动。"""
|
"""检查是否需要启动主循环,如果未激活则启动。"""
|
||||||
|
|
@ -284,6 +286,10 @@ class HeartFChatting:
|
||||||
|
|
||||||
async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()):
|
async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()):
|
||||||
await self.expression_learner.trigger_learning_for_chat()
|
await self.expression_learner.trigger_learning_for_chat()
|
||||||
|
|
||||||
|
await global_memory_chest.build_running_content(chat_id=self.stream_id)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
cycle_timers, thinking_id = self.start_cycle()
|
cycle_timers, thinking_id = self.start_cycle()
|
||||||
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考")
|
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考")
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,321 @@
|
||||||
|
|
||||||
|
from src.llm_models.utils_model import LLMRequest
|
||||||
|
from src.config.config import model_config
|
||||||
|
from src.common.database.database_model import MemoryChest as MemoryChestModel
|
||||||
|
from src.common.logger import get_logger
|
||||||
|
from src.config.config import global_config
|
||||||
|
from src.plugin_system.apis.message_api import build_readable_messages
|
||||||
|
import time
|
||||||
|
from src.plugin_system.apis.message_api import get_raw_msg_by_timestamp_with_chat
|
||||||
|
|
||||||
|
logger = get_logger("memory_chest")
|
||||||
|
|
||||||
|
class MemoryChest:
|
||||||
|
def __init__(self):
|
||||||
|
|
||||||
|
self.LLMRequest = LLMRequest(
|
||||||
|
model_set=model_config.model_task_config.utils_small,
|
||||||
|
request_type="memory_chest",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.memory_build_threshold = 20
|
||||||
|
self.memory_size_limit = 300
|
||||||
|
|
||||||
|
self.running_content_list = {} # {chat_id: {"content": running_content, "last_update_time": timestamp}}
|
||||||
|
self.fetched_memory_list = [] # [(chat_id, (question, answer, timestamp)), ...]
|
||||||
|
|
||||||
|
async def build_running_content(self, chat_id: str = None) -> str:
|
||||||
|
"""
|
||||||
|
构建记忆仓库的运行内容
|
||||||
|
|
||||||
|
Args:
|
||||||
|
message_str: 消息内容
|
||||||
|
chat_id: 聊天ID,用于提取对应的运行内容
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 构建后的运行内容
|
||||||
|
"""
|
||||||
|
# 检查是否需要更新:上次更新时间和现在时间的消息数量大于30
|
||||||
|
if chat_id not in self.running_content_list:
|
||||||
|
self.running_content_list[chat_id] = {
|
||||||
|
"content": "",
|
||||||
|
"last_update_time": time.time()
|
||||||
|
}
|
||||||
|
|
||||||
|
should_update = True
|
||||||
|
if chat_id and chat_id in self.running_content_list:
|
||||||
|
last_update_time = self.running_content_list[chat_id]["last_update_time"]
|
||||||
|
current_time = time.time()
|
||||||
|
# 使用message_api获取消息数量
|
||||||
|
message_list = get_raw_msg_by_timestamp_with_chat(
|
||||||
|
timestamp_start=last_update_time,
|
||||||
|
timestamp_end=current_time,
|
||||||
|
chat_id=chat_id,
|
||||||
|
limit=global_config.chat.max_context_size * 2,
|
||||||
|
)
|
||||||
|
|
||||||
|
new_messages_count = len(message_list)
|
||||||
|
should_update = new_messages_count > self.memory_build_threshold
|
||||||
|
logger.info(f"chat_id {chat_id} 自上次更新后有 {new_messages_count} 条新消息,{'需要' if should_update else '不需要'}更新")
|
||||||
|
|
||||||
|
|
||||||
|
if should_update:
|
||||||
|
# 如果有chat_id,先提取对应的running_content
|
||||||
|
message_str = build_readable_messages(
|
||||||
|
message_list,
|
||||||
|
replace_bot_name=True,
|
||||||
|
timestamp_mode="relative",
|
||||||
|
read_mark=0.0,
|
||||||
|
show_actions=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
current_running_content = ""
|
||||||
|
if chat_id and chat_id in self.running_content_list:
|
||||||
|
current_running_content = self.running_content_list[chat_id]["content"]
|
||||||
|
|
||||||
|
prompt = f"""
|
||||||
|
以下是你的记忆内容:
|
||||||
|
{current_running_content}
|
||||||
|
|
||||||
|
请将下面的新聊天记录内的有用的信息,添加到你的记忆中
|
||||||
|
请主要关注概念和知识,而不是聊天的琐事
|
||||||
|
记忆为一段纯文本,逻辑清晰,指出事件,概念的含义,并说明关系
|
||||||
|
请输出添加后的记忆内容,不要输出其他内容:
|
||||||
|
{message_str}
|
||||||
|
"""
|
||||||
|
|
||||||
|
if global_config.debug.show_prompt:
|
||||||
|
logger.info(f"记忆仓库构建运行内容 prompt: {prompt}")
|
||||||
|
else:
|
||||||
|
logger.debug(f"记忆仓库构建运行内容 prompt: {prompt}")
|
||||||
|
|
||||||
|
running_content, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
|
||||||
|
|
||||||
|
print(f"记忆仓库构建运行内容: {running_content}")
|
||||||
|
|
||||||
|
# 如果有chat_id,更新对应的running_content
|
||||||
|
if chat_id and running_content:
|
||||||
|
self.running_content_list[chat_id] = {
|
||||||
|
"content": running_content,
|
||||||
|
"last_update_time": time.time()
|
||||||
|
}
|
||||||
|
|
||||||
|
# 检查running_content长度是否大于500
|
||||||
|
if len(running_content) > self.memory_size_limit:
|
||||||
|
await self._save_to_database_and_clear(chat_id, running_content)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
return running_content
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_all_titles(self) -> list[str]:
|
||||||
|
"""
|
||||||
|
获取记忆仓库中的所有标题
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: 包含所有标题的列表
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# 查询所有记忆记录的标题
|
||||||
|
titles = []
|
||||||
|
for memory in MemoryChestModel.select():
|
||||||
|
if memory.title:
|
||||||
|
titles.append(memory.title)
|
||||||
|
return titles
|
||||||
|
except Exception as e:
|
||||||
|
print(f"获取记忆标题时出错: {e}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
async def get_answer_by_question(self, chat_id: str = "", question: str = "") -> str:
|
||||||
|
"""
|
||||||
|
根据问题获取答案
|
||||||
|
"""
|
||||||
|
title = await self.select_title_by_question(question)
|
||||||
|
|
||||||
|
if not title:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
for memory in MemoryChestModel.select():
|
||||||
|
if memory.title == title:
|
||||||
|
content = memory.content
|
||||||
|
|
||||||
|
prompt = f"""
|
||||||
|
{content}
|
||||||
|
|
||||||
|
请根据问题:{question}
|
||||||
|
在上方内容中,提取相关信息的原文并输出,请务必提取上面原文,不要输出其他内容:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if global_config.debug.show_prompt:
|
||||||
|
logger.info(f"记忆仓库获取答案 prompt: {prompt}")
|
||||||
|
else:
|
||||||
|
logger.debug(f"记忆仓库获取答案 prompt: {prompt}")
|
||||||
|
|
||||||
|
answer, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
|
||||||
|
|
||||||
|
|
||||||
|
logger.info(f"记忆仓库获取答案: {answer}")
|
||||||
|
|
||||||
|
# 将问题和答案存到fetched_memory_list
|
||||||
|
if chat_id and answer:
|
||||||
|
self.fetched_memory_list.append((chat_id, (question, answer, time.time())))
|
||||||
|
|
||||||
|
# 清理fetched_memory_list
|
||||||
|
self._cleanup_fetched_memory_list()
|
||||||
|
|
||||||
|
return answer
|
||||||
|
|
||||||
|
def get_chat_memories_as_string(self, chat_id: str) -> str:
|
||||||
|
"""
|
||||||
|
获取某个chat_id的所有记忆,并构建成字符串
|
||||||
|
|
||||||
|
Args:
|
||||||
|
chat_id: 聊天ID
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 格式化的记忆字符串,格式:问题:xxx,答案:xxxxx\n问题:xxx,答案:xxxxx\n...
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
memories = []
|
||||||
|
|
||||||
|
# 从fetched_memory_list中获取该chat_id的所有记忆
|
||||||
|
for cid, (question, answer, timestamp) in self.fetched_memory_list:
|
||||||
|
if cid == chat_id:
|
||||||
|
memories.append(f"问题:{question},答案:{answer}")
|
||||||
|
|
||||||
|
# 按时间戳排序(最新的在后面)
|
||||||
|
memories.sort()
|
||||||
|
|
||||||
|
# 用换行符连接所有记忆
|
||||||
|
result = "\n".join(memories)
|
||||||
|
|
||||||
|
logger.info(f"chat_id {chat_id} 共有 {len(memories)} 条记忆")
|
||||||
|
return result
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"获取chat_id {chat_id} 的记忆时出错: {e}")
|
||||||
|
return ""
|
||||||
|
|
||||||
|
|
||||||
|
async def select_title_by_question(self, question: str) -> str:
|
||||||
|
"""
|
||||||
|
根据消息内容选择最匹配的标题
|
||||||
|
|
||||||
|
Args:
|
||||||
|
question: 问题
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 选择的标题
|
||||||
|
"""
|
||||||
|
# 获取所有标题并构建格式化字符串
|
||||||
|
titles = self.get_all_titles()
|
||||||
|
formatted_titles = ""
|
||||||
|
for title in titles:
|
||||||
|
formatted_titles += f"{title}\n"
|
||||||
|
|
||||||
|
prompt = f"""
|
||||||
|
所有主题:
|
||||||
|
{formatted_titles}
|
||||||
|
|
||||||
|
请根据以下问题,选择一个能够回答问题的主题:
|
||||||
|
问题:{question}
|
||||||
|
请你输出主题,不要输出其他内容,完整输出主题名:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if global_config.debug.show_prompt:
|
||||||
|
logger.info(f"记忆仓库选择标题 prompt: {prompt}")
|
||||||
|
else:
|
||||||
|
logger.debug(f"记忆仓库选择标题 prompt: {prompt}")
|
||||||
|
|
||||||
|
|
||||||
|
title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
|
||||||
|
|
||||||
|
# 根据 title 获取 titles 里的对应项
|
||||||
|
titles = self.get_all_titles()
|
||||||
|
selected_title = None
|
||||||
|
|
||||||
|
# 查找完全匹配的标题
|
||||||
|
for t in titles:
|
||||||
|
if t == title:
|
||||||
|
selected_title = t
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
logger.info(f"记忆仓库选择标题: {selected_title}")
|
||||||
|
|
||||||
|
return selected_title
|
||||||
|
|
||||||
|
def _cleanup_fetched_memory_list(self):
|
||||||
|
"""
|
||||||
|
清理fetched_memory_list,移除超过10分钟的记忆和超过10条的最旧记忆
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
current_time = time.time()
|
||||||
|
ten_minutes_ago = current_time - 600 # 10分钟 = 600秒
|
||||||
|
|
||||||
|
# 移除超过10分钟的记忆
|
||||||
|
self.fetched_memory_list = [
|
||||||
|
(chat_id, (question, answer, timestamp))
|
||||||
|
for chat_id, (question, answer, timestamp) in self.fetched_memory_list
|
||||||
|
if timestamp > ten_minutes_ago
|
||||||
|
]
|
||||||
|
|
||||||
|
# 如果记忆条数超过10条,移除最旧的5条
|
||||||
|
if len(self.fetched_memory_list) > 10:
|
||||||
|
# 按时间戳排序,移除最旧的5条
|
||||||
|
self.fetched_memory_list.sort(key=lambda x: x[1][2]) # 按timestamp排序
|
||||||
|
self.fetched_memory_list = self.fetched_memory_list[5:] # 保留最新的5条
|
||||||
|
|
||||||
|
logger.debug(f"fetched_memory_list清理后,当前有 {len(self.fetched_memory_list)} 条记忆")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"清理fetched_memory_list时出错: {e}")
|
||||||
|
|
||||||
|
async def _save_to_database_and_clear(self, chat_id: str, content: str):
|
||||||
|
"""
|
||||||
|
生成标题,保存到数据库,并清空对应chat_id的running_content
|
||||||
|
|
||||||
|
Args:
|
||||||
|
chat_id: 聊天ID
|
||||||
|
content: 要保存的内容
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# 生成标题
|
||||||
|
title_prompt = f"""
|
||||||
|
请为以下内容生成一个描述全面的标题,要求描述内容的主要概念和事件:
|
||||||
|
{content}
|
||||||
|
|
||||||
|
请只输出标题,不要输出其他内容:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if global_config.debug.show_prompt:
|
||||||
|
logger.info(f"记忆仓库生成标题 prompt: {title_prompt}")
|
||||||
|
else:
|
||||||
|
logger.debug(f"记忆仓库生成标题 prompt: {title_prompt}")
|
||||||
|
|
||||||
|
title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(title_prompt)
|
||||||
|
|
||||||
|
if title:
|
||||||
|
# 保存到数据库
|
||||||
|
MemoryChestModel.create(
|
||||||
|
title=title.strip(),
|
||||||
|
content=content
|
||||||
|
)
|
||||||
|
logger.info(f"已保存记忆仓库内容,标题: {title.strip()}, chat_id: {chat_id}")
|
||||||
|
|
||||||
|
# 清空对应chat_id的running_content
|
||||||
|
if chat_id in self.running_content_list:
|
||||||
|
del self.running_content_list[chat_id]
|
||||||
|
logger.info(f"已清空chat_id {chat_id} 的running_content")
|
||||||
|
else:
|
||||||
|
logger.warning(f"生成标题失败,chat_id: {chat_id}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"保存记忆仓库内容时出错: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
global_memory_chest = MemoryChest()
|
||||||
|
|
@ -109,7 +109,7 @@ no_reply_until_call
|
||||||
"""
|
"""
|
||||||
{action_name}
|
{action_name}
|
||||||
动作描述:{action_description}
|
动作描述:{action_description}
|
||||||
使用条件:
|
使用条件{parallel_text}:
|
||||||
{action_require}
|
{action_require}
|
||||||
{{
|
{{
|
||||||
"action": "{action_name}",{action_parameters},
|
"action": "{action_name}",{action_parameters},
|
||||||
|
|
@ -421,6 +421,11 @@ class ActionPlanner:
|
||||||
for require_item in action_info.action_require:
|
for require_item in action_info.action_require:
|
||||||
require_text += f"- {require_item}\n"
|
require_text += f"- {require_item}\n"
|
||||||
require_text = require_text.rstrip("\n")
|
require_text = require_text.rstrip("\n")
|
||||||
|
|
||||||
|
if not action_info.parallel_action:
|
||||||
|
parallel_text = "(当选择这个动作时,请不要选择其他动作)"
|
||||||
|
else:
|
||||||
|
parallel_text = ""
|
||||||
|
|
||||||
# 获取动作提示模板并填充
|
# 获取动作提示模板并填充
|
||||||
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
|
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
|
||||||
|
|
@ -429,6 +434,7 @@ class ActionPlanner:
|
||||||
action_description=action_info.description,
|
action_description=action_info.description,
|
||||||
action_parameters=param_text,
|
action_parameters=param_text,
|
||||||
action_require=require_text,
|
action_require=require_text,
|
||||||
|
parallel_text=parallel_text,
|
||||||
)
|
)
|
||||||
|
|
||||||
action_options_block += using_action_prompt
|
action_options_block += using_action_prompt
|
||||||
|
|
|
||||||
|
|
@ -6,6 +6,7 @@ import re
|
||||||
|
|
||||||
from typing import List, Optional, Dict, Any, Tuple
|
from typing import List, Optional, Dict, Any, Tuple
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from src.chat.memory_system.Memory_chest import global_memory_chest
|
||||||
from src.mais4u.mai_think import mai_thinking_manager
|
from src.mais4u.mai_think import mai_thinking_manager
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
from src.common.data_models.database_data_model import DatabaseMessages
|
from src.common.data_models.database_data_model import DatabaseMessages
|
||||||
|
|
@ -315,6 +316,17 @@ class DefaultReplyer:
|
||||||
# memory_str += f"- {instant_memory}\n"
|
# memory_str += f"- {instant_memory}\n"
|
||||||
|
|
||||||
# return memory_str
|
# return memory_str
|
||||||
|
|
||||||
|
async def build_memory_block(self) -> str:
|
||||||
|
"""构建记忆块
|
||||||
|
"""
|
||||||
|
# if not global_config.memory.enable_memory:
|
||||||
|
# return ""
|
||||||
|
|
||||||
|
if global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id):
|
||||||
|
return f"你有以下记忆:\n{global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id)}"
|
||||||
|
else:
|
||||||
|
return ""
|
||||||
|
|
||||||
async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str:
|
async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str:
|
||||||
"""构建工具信息块
|
"""构建工具信息块
|
||||||
|
|
@ -701,6 +713,7 @@ class DefaultReplyer:
|
||||||
# self.build_relation_info(chat_talking_prompt_short, sender, person_list_short), "relation_info"
|
# self.build_relation_info(chat_talking_prompt_short, sender, person_list_short), "relation_info"
|
||||||
# ),
|
# ),
|
||||||
# self._time_and_run_task(self.build_memory_block(message_list_before_short, target), "memory_block"),
|
# self._time_and_run_task(self.build_memory_block(message_list_before_short, target), "memory_block"),
|
||||||
|
self._time_and_run_task(self.build_memory_block(), "memory_block"),
|
||||||
self._time_and_run_task(
|
self._time_and_run_task(
|
||||||
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
|
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
|
||||||
),
|
),
|
||||||
|
|
@ -714,6 +727,7 @@ class DefaultReplyer:
|
||||||
"expression_habits": "选取表达方式",
|
"expression_habits": "选取表达方式",
|
||||||
"relation_info": "感受关系",
|
"relation_info": "感受关系",
|
||||||
# "memory_block": "回忆",
|
# "memory_block": "回忆",
|
||||||
|
"memory_block": "记忆",
|
||||||
"tool_info": "使用工具",
|
"tool_info": "使用工具",
|
||||||
"prompt_info": "获取知识",
|
"prompt_info": "获取知识",
|
||||||
"actions_info": "动作信息",
|
"actions_info": "动作信息",
|
||||||
|
|
@ -742,6 +756,7 @@ class DefaultReplyer:
|
||||||
selected_expressions: List[int]
|
selected_expressions: List[int]
|
||||||
# relation_info: str = results_dict["relation_info"]
|
# relation_info: str = results_dict["relation_info"]
|
||||||
# memory_block: str = results_dict["memory_block"]
|
# memory_block: str = results_dict["memory_block"]
|
||||||
|
memory_block: str = results_dict["memory_block"]
|
||||||
tool_info: str = results_dict["tool_info"]
|
tool_info: str = results_dict["tool_info"]
|
||||||
prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果
|
prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果
|
||||||
actions_info: str = results_dict["actions_info"]
|
actions_info: str = results_dict["actions_info"]
|
||||||
|
|
@ -779,6 +794,7 @@ class DefaultReplyer:
|
||||||
"replyer_self_prompt",
|
"replyer_self_prompt",
|
||||||
expression_habits_block=expression_habits_block,
|
expression_habits_block=expression_habits_block,
|
||||||
tool_info_block=tool_info,
|
tool_info_block=tool_info,
|
||||||
|
memory_block=memory_block,
|
||||||
knowledge_prompt=prompt_info,
|
knowledge_prompt=prompt_info,
|
||||||
# memory_block=memory_block,
|
# memory_block=memory_block,
|
||||||
# relation_info_block=relation_info,
|
# relation_info_block=relation_info,
|
||||||
|
|
@ -798,6 +814,7 @@ class DefaultReplyer:
|
||||||
"replyer_prompt",
|
"replyer_prompt",
|
||||||
expression_habits_block=expression_habits_block,
|
expression_habits_block=expression_habits_block,
|
||||||
tool_info_block=tool_info,
|
tool_info_block=tool_info,
|
||||||
|
memory_block=memory_block,
|
||||||
knowledge_prompt=prompt_info,
|
knowledge_prompt=prompt_info,
|
||||||
# memory_block=memory_block,
|
# memory_block=memory_block,
|
||||||
# relation_info_block=relation_info,
|
# relation_info_block=relation_info,
|
||||||
|
|
@ -946,7 +963,7 @@ class DefaultReplyer:
|
||||||
async def llm_generate_content(self, prompt: str):
|
async def llm_generate_content(self, prompt: str):
|
||||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||||
# 直接使用已初始化的模型实例
|
# 直接使用已初始化的模型实例
|
||||||
# logger.info(f"\n{prompt}\n")
|
logger.info(f"\n{prompt}\n")
|
||||||
|
|
||||||
if global_config.debug.show_prompt:
|
if global_config.debug.show_prompt:
|
||||||
logger.info(f"\n{prompt}\n")
|
logger.info(f"\n{prompt}\n")
|
||||||
|
|
|
||||||
|
|
@ -6,6 +6,7 @@ import re
|
||||||
|
|
||||||
from typing import List, Optional, Dict, Any, Tuple
|
from typing import List, Optional, Dict, Any, Tuple
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from src.chat.memory_system.Memory_chest import global_memory_chest
|
||||||
from src.mais4u.mai_think import mai_thinking_manager
|
from src.mais4u.mai_think import mai_thinking_manager
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
from src.common.data_models.database_data_model import DatabaseMessages
|
from src.common.data_models.database_data_model import DatabaseMessages
|
||||||
|
|
@ -312,6 +313,15 @@ class PrivateReplyer:
|
||||||
|
|
||||||
# return memory_str
|
# return memory_str
|
||||||
|
|
||||||
|
|
||||||
|
async def build_memory_block(self) -> str:
|
||||||
|
"""构建记忆块
|
||||||
|
"""
|
||||||
|
if global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id):
|
||||||
|
return f"你有以下记忆:\n{global_memory_chest.get_chat_memories_as_string(self.chat_stream.stream_id)}"
|
||||||
|
else:
|
||||||
|
return ""
|
||||||
|
|
||||||
async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str:
|
async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str:
|
||||||
"""构建工具信息块
|
"""构建工具信息块
|
||||||
|
|
||||||
|
|
@ -582,6 +592,7 @@ class PrivateReplyer:
|
||||||
self._time_and_run_task(
|
self._time_and_run_task(
|
||||||
self.build_relation_info(chat_talking_prompt_short, sender), "relation_info"
|
self.build_relation_info(chat_talking_prompt_short, sender), "relation_info"
|
||||||
),
|
),
|
||||||
|
self._time_and_run_task(self.build_memory_block(), "memory_block"),
|
||||||
# self._time_and_run_task(self.build_memory_block(message_list_before_short, target), "memory_block"),
|
# self._time_and_run_task(self.build_memory_block(message_list_before_short, target), "memory_block"),
|
||||||
self._time_and_run_task(
|
self._time_and_run_task(
|
||||||
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
|
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
|
||||||
|
|
@ -595,7 +606,7 @@ class PrivateReplyer:
|
||||||
task_name_mapping = {
|
task_name_mapping = {
|
||||||
"expression_habits": "选取表达方式",
|
"expression_habits": "选取表达方式",
|
||||||
"relation_info": "感受关系",
|
"relation_info": "感受关系",
|
||||||
# "memory_block": "回忆",
|
"memory_block": "回忆",
|
||||||
"tool_info": "使用工具",
|
"tool_info": "使用工具",
|
||||||
"prompt_info": "获取知识",
|
"prompt_info": "获取知识",
|
||||||
"actions_info": "动作信息",
|
"actions_info": "动作信息",
|
||||||
|
|
@ -623,7 +634,7 @@ class PrivateReplyer:
|
||||||
expression_habits_block: str
|
expression_habits_block: str
|
||||||
selected_expressions: List[int]
|
selected_expressions: List[int]
|
||||||
relation_info: str = results_dict["relation_info"]
|
relation_info: str = results_dict["relation_info"]
|
||||||
# memory_block: str = results_dict["memory_block"]
|
memory_block: str = results_dict["memory_block"]
|
||||||
tool_info: str = results_dict["tool_info"]
|
tool_info: str = results_dict["tool_info"]
|
||||||
prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果
|
prompt_info: str = results_dict["prompt_info"] # 直接使用格式化后的结果
|
||||||
actions_info: str = results_dict["actions_info"]
|
actions_info: str = results_dict["actions_info"]
|
||||||
|
|
@ -649,7 +660,7 @@ class PrivateReplyer:
|
||||||
expression_habits_block=expression_habits_block,
|
expression_habits_block=expression_habits_block,
|
||||||
tool_info_block=tool_info,
|
tool_info_block=tool_info,
|
||||||
knowledge_prompt=prompt_info,
|
knowledge_prompt=prompt_info,
|
||||||
# memory_block=memory_block,
|
memory_block=memory_block,
|
||||||
relation_info_block=relation_info,
|
relation_info_block=relation_info,
|
||||||
extra_info_block=extra_info_block,
|
extra_info_block=extra_info_block,
|
||||||
identity=personality_prompt,
|
identity=personality_prompt,
|
||||||
|
|
@ -670,7 +681,7 @@ class PrivateReplyer:
|
||||||
expression_habits_block=expression_habits_block,
|
expression_habits_block=expression_habits_block,
|
||||||
tool_info_block=tool_info,
|
tool_info_block=tool_info,
|
||||||
knowledge_prompt=prompt_info,
|
knowledge_prompt=prompt_info,
|
||||||
# memory_block=memory_block,
|
memory_block=memory_block,
|
||||||
relation_info_block=relation_info,
|
relation_info_block=relation_info,
|
||||||
extra_info_block=extra_info_block,
|
extra_info_block=extra_info_block,
|
||||||
identity=personality_prompt,
|
identity=personality_prompt,
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ def init_replyer_prompt():
|
||||||
|
|
||||||
Prompt(
|
Prompt(
|
||||||
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
||||||
{expression_habits_block}
|
{expression_habits_block}{memory_block}
|
||||||
|
|
||||||
你正在qq群里聊天,下面是群里正在聊的内容:
|
你正在qq群里聊天,下面是群里正在聊的内容:
|
||||||
{time_block}
|
{time_block}
|
||||||
|
|
@ -34,7 +34,7 @@ def init_replyer_prompt():
|
||||||
|
|
||||||
Prompt(
|
Prompt(
|
||||||
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
||||||
{expression_habits_block}
|
{expression_habits_block}{memory_block}
|
||||||
|
|
||||||
你正在qq群里聊天,下面是群里正在聊的内容:
|
你正在qq群里聊天,下面是群里正在聊的内容:
|
||||||
{time_block}
|
{time_block}
|
||||||
|
|
@ -55,7 +55,7 @@ def init_replyer_prompt():
|
||||||
|
|
||||||
Prompt(
|
Prompt(
|
||||||
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
||||||
{expression_habits_block}
|
{expression_habits_block}{memory_block}
|
||||||
|
|
||||||
你正在和{sender_name}聊天,这是你们之前聊的内容:
|
你正在和{sender_name}聊天,这是你们之前聊的内容:
|
||||||
{time_block}
|
{time_block}
|
||||||
|
|
@ -74,7 +74,7 @@ def init_replyer_prompt():
|
||||||
|
|
||||||
Prompt(
|
Prompt(
|
||||||
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
"""{knowledge_prompt}{tool_info_block}{extra_info_block}
|
||||||
{expression_habits_block}
|
{expression_habits_block}{memory_block}
|
||||||
|
|
||||||
你正在和{sender_name}聊天,这是你们之前聊的内容:
|
你正在和{sender_name}聊天,这是你们之前聊的内容:
|
||||||
{time_block}
|
{time_block}
|
||||||
|
|
|
||||||
|
|
@ -317,6 +317,19 @@ class Expression(BaseModel):
|
||||||
class Meta:
|
class Meta:
|
||||||
table_name = "expression"
|
table_name = "expression"
|
||||||
|
|
||||||
|
class MemoryChest(BaseModel):
|
||||||
|
"""
|
||||||
|
用于存储记忆仓库的模型
|
||||||
|
"""
|
||||||
|
|
||||||
|
title = TextField() # 标题
|
||||||
|
content = TextField() # 内容
|
||||||
|
|
||||||
|
class Meta:
|
||||||
|
table_name = "memory_chest"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class GraphNodes(BaseModel):
|
class GraphNodes(BaseModel):
|
||||||
"""
|
"""
|
||||||
|
|
@ -369,6 +382,7 @@ def create_tables():
|
||||||
GraphNodes, # 添加图节点表
|
GraphNodes, # 添加图节点表
|
||||||
GraphEdges, # 添加图边表
|
GraphEdges, # 添加图边表
|
||||||
ActionRecords, # 添加 ActionRecords 到初始化列表
|
ActionRecords, # 添加 ActionRecords 到初始化列表
|
||||||
|
MemoryChest,
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -396,6 +410,7 @@ def initialize_database(sync_constraints=False):
|
||||||
GraphNodes,
|
GraphNodes,
|
||||||
GraphEdges,
|
GraphEdges,
|
||||||
ActionRecords, # 添加 ActionRecords 到初始化列表
|
ActionRecords, # 添加 ActionRecords 到初始化列表
|
||||||
|
MemoryChest,
|
||||||
]
|
]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
@ -493,6 +508,7 @@ def sync_field_constraints():
|
||||||
GraphNodes,
|
GraphNodes,
|
||||||
GraphEdges,
|
GraphEdges,
|
||||||
ActionRecords,
|
ActionRecords,
|
||||||
|
MemoryChest,
|
||||||
]
|
]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
|
||||||
|
|
@ -53,7 +53,7 @@ TEMPLATE_DIR = os.path.join(PROJECT_ROOT, "template")
|
||||||
|
|
||||||
# 考虑到,实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
|
# 考虑到,实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
|
||||||
# 对该字段的更新,请严格参照语义化版本规范:https://semver.org/lang/zh-CN/
|
# 对该字段的更新,请严格参照语义化版本规范:https://semver.org/lang/zh-CN/
|
||||||
MMC_VERSION = "0.10.4-snapshot.1"
|
MMC_VERSION = "0.11.0-snapshot.1"
|
||||||
|
|
||||||
|
|
||||||
def get_key_comment(toml_table, key):
|
def get_key_comment(toml_table, key):
|
||||||
|
|
|
||||||
|
|
@ -3,9 +3,13 @@ from typing import Tuple
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
from src.config.config import global_config
|
from src.config.config import global_config
|
||||||
from src.chat.utils.prompt_builder import Prompt
|
from src.chat.utils.prompt_builder import Prompt
|
||||||
|
from src.llm_models.payload_content.tool_option import ToolParamType
|
||||||
from src.plugin_system import BaseAction, ActionActivationType
|
from src.plugin_system import BaseAction, ActionActivationType
|
||||||
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
||||||
from src.chat.utils.utils import cut_key_words
|
from src.chat.utils.utils import cut_key_words
|
||||||
|
from src.chat.memory_system.Memory_chest import global_memory_chest
|
||||||
|
from src.plugin_system.base.base_tool import BaseTool
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
logger = get_logger("memory")
|
logger = get_logger("memory")
|
||||||
|
|
||||||
|
|
@ -66,73 +70,153 @@ def init_prompt():
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class BuildMemoryAction(BaseAction):
|
# class BuildMemoryAction(BaseAction):
|
||||||
"""关系动作 - 构建关系"""
|
# """关系动作 - 构建关系"""
|
||||||
|
|
||||||
|
# activation_type = ActionActivationType.LLM_JUDGE
|
||||||
|
# parallel_action = True
|
||||||
|
|
||||||
|
# # 动作基本信息
|
||||||
|
# action_name = "build_memory"
|
||||||
|
# action_description = (
|
||||||
|
# "了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息"
|
||||||
|
# )
|
||||||
|
|
||||||
|
# # 动作参数定义
|
||||||
|
# action_parameters = {
|
||||||
|
# "concept_name": "需要了解或记忆的概念或事件的名称",
|
||||||
|
# "concept_description": "需要了解或记忆的概念或事件的描述,需要具体且明确",
|
||||||
|
# }
|
||||||
|
|
||||||
|
# # 动作使用场景
|
||||||
|
# action_require = [
|
||||||
|
# "了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息",
|
||||||
|
# "有你不了解的概念",
|
||||||
|
# "有人要求你记住某个概念或者事件",
|
||||||
|
# "你对某件事或概念有新的理解,或产生了兴趣",
|
||||||
|
# ]
|
||||||
|
|
||||||
|
# # 关联类型
|
||||||
|
# associated_types = ["text"]
|
||||||
|
|
||||||
|
# async def execute(self) -> Tuple[bool, str]:
|
||||||
|
# """执行关系动作"""
|
||||||
|
|
||||||
|
# try:
|
||||||
|
# # 1. 获取构建关系的原因
|
||||||
|
# concept_description = self.action_data.get("concept_description", "")
|
||||||
|
# logger.info(f"{self.log_prefix} 添加记忆原因: {self.reasoning}")
|
||||||
|
# concept_name = self.action_data.get("concept_name", "")
|
||||||
|
# # 2. 获取目标用户信息
|
||||||
|
|
||||||
|
# # 对 concept_name 进行jieba分词
|
||||||
|
# concept_name_tokens = cut_key_words(concept_name)
|
||||||
|
# # logger.info(f"{self.log_prefix} 对 concept_name 进行分词结果: {concept_name_tokens}")
|
||||||
|
|
||||||
|
# filtered_concept_name_tokens = [
|
||||||
|
# token
|
||||||
|
# for token in concept_name_tokens
|
||||||
|
# if all(keyword not in token for keyword in global_config.memory.memory_ban_words)
|
||||||
|
# ]
|
||||||
|
|
||||||
|
# if not filtered_concept_name_tokens:
|
||||||
|
# logger.warning(f"{self.log_prefix} 过滤后的概念名称列表为空,跳过添加记忆")
|
||||||
|
# return False, "过滤后的概念名称列表为空,跳过添加记忆"
|
||||||
|
|
||||||
|
# similar_topics_dict = (
|
||||||
|
# hippocampus_manager.get_hippocampus().parahippocampal_gyrus.get_similar_topics_from_keywords(
|
||||||
|
# filtered_concept_name_tokens
|
||||||
|
# )
|
||||||
|
# )
|
||||||
|
# await hippocampus_manager.get_hippocampus().parahippocampal_gyrus.add_memory_with_similar(
|
||||||
|
# concept_description, similar_topics_dict
|
||||||
|
# )
|
||||||
|
|
||||||
|
# return True, f"成功添加记忆: {concept_name}"
|
||||||
|
|
||||||
|
# except Exception as e:
|
||||||
|
# logger.error(f"{self.log_prefix} 构建记忆时出错: {e}")
|
||||||
|
# return False, f"构建记忆时出错: {e}"
|
||||||
|
|
||||||
|
class GetMemoryTool(BaseTool):
|
||||||
|
"""获取用户信息"""
|
||||||
|
|
||||||
|
name = "get_memory"
|
||||||
|
description = "在记忆中搜索,获取某个问题的答案"
|
||||||
|
parameters = [
|
||||||
|
("question", ToolParamType.STRING, "需要获取答案的问题", True, None)
|
||||||
|
]
|
||||||
|
|
||||||
|
available_for_llm = True
|
||||||
|
|
||||||
|
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
|
||||||
|
"""执行比较两个数的大小
|
||||||
|
|
||||||
|
Args:
|
||||||
|
function_args: 工具参数
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: 工具执行结果
|
||||||
|
"""
|
||||||
|
question: str = function_args.get("question") # type: ignore
|
||||||
|
|
||||||
|
answer = await global_memory_chest.get_answer_by_question(question=question)
|
||||||
|
if not answer:
|
||||||
|
return {"content": f"没有找到相关记忆"}
|
||||||
|
|
||||||
|
return {"content": f"问题:{question},答案:{answer}"}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class GetMemoryAction(BaseAction):
|
||||||
|
"""关系动作 - 获取记忆"""
|
||||||
|
|
||||||
activation_type = ActionActivationType.LLM_JUDGE
|
activation_type = ActionActivationType.LLM_JUDGE
|
||||||
parallel_action = True
|
parallel_action = True
|
||||||
|
|
||||||
# 动作基本信息
|
# 动作基本信息
|
||||||
action_name = "build_memory"
|
action_name = "get_memory"
|
||||||
action_description = (
|
action_description = (
|
||||||
"了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息"
|
"在记忆中搜寻某个问题的答案"
|
||||||
)
|
)
|
||||||
|
|
||||||
# 动作参数定义
|
# 动作参数定义
|
||||||
action_parameters = {
|
action_parameters = {
|
||||||
"concept_name": "需要了解或记忆的概念或事件的名称",
|
"question": "需要搜寻或回答的问题",
|
||||||
"concept_description": "需要了解或记忆的概念或事件的描述,需要具体且明确",
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# 动作使用场景
|
# 动作使用场景
|
||||||
action_require = [
|
action_require = [
|
||||||
"了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息",
|
"在记忆中搜寻某个问题的答案",
|
||||||
"有你不了解的概念",
|
"有你不了解的概念",
|
||||||
"有人要求你记住某个概念或者事件",
|
"有人提问关于过去的事情"
|
||||||
"你对某件事或概念有新的理解,或产生了兴趣",
|
"你需要根据记忆回答某个问题",
|
||||||
]
|
]
|
||||||
|
|
||||||
# 关联类型
|
# 关联类型
|
||||||
associated_types = ["text"]
|
associated_types = ["text"]
|
||||||
|
|
||||||
async def execute(self) -> Tuple[bool, str]:
|
async def execute(self) -> Tuple[bool, str]:
|
||||||
"""执行关系动作"""
|
"""执行关系动作"""
|
||||||
|
|
||||||
try:
|
question = self.action_data.get("question", "")
|
||||||
# 1. 获取构建关系的原因
|
answer = await global_memory_chest.get_answer_by_question(self.chat_id, question)
|
||||||
concept_description = self.action_data.get("concept_description", "")
|
if not answer:
|
||||||
logger.info(f"{self.log_prefix} 添加记忆原因: {self.reasoning}")
|
await self.store_action_info(
|
||||||
concept_name = self.action_data.get("concept_name", "")
|
action_build_into_prompt=True,
|
||||||
# 2. 获取目标用户信息
|
action_prompt_display=f"你回忆了有关问题:{question}的记忆,但是没有找到相关记忆",
|
||||||
|
action_done=True,
|
||||||
# 对 concept_name 进行jieba分词
|
|
||||||
concept_name_tokens = cut_key_words(concept_name)
|
|
||||||
# logger.info(f"{self.log_prefix} 对 concept_name 进行分词结果: {concept_name_tokens}")
|
|
||||||
|
|
||||||
filtered_concept_name_tokens = [
|
|
||||||
token
|
|
||||||
for token in concept_name_tokens
|
|
||||||
if all(keyword not in token for keyword in global_config.memory.memory_ban_words)
|
|
||||||
]
|
|
||||||
|
|
||||||
if not filtered_concept_name_tokens:
|
|
||||||
logger.warning(f"{self.log_prefix} 过滤后的概念名称列表为空,跳过添加记忆")
|
|
||||||
return False, "过滤后的概念名称列表为空,跳过添加记忆"
|
|
||||||
|
|
||||||
similar_topics_dict = (
|
|
||||||
hippocampus_manager.get_hippocampus().parahippocampal_gyrus.get_similar_topics_from_keywords(
|
|
||||||
filtered_concept_name_tokens
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
await hippocampus_manager.get_hippocampus().parahippocampal_gyrus.add_memory_with_similar(
|
|
||||||
concept_description, similar_topics_dict
|
return False, f"没有找到相关记忆"
|
||||||
)
|
|
||||||
|
await self.store_action_info(
|
||||||
return True, f"成功添加记忆: {concept_name}"
|
action_build_into_prompt=True,
|
||||||
|
action_prompt_display=f"你回忆了有关问题:{question}的记忆,答案是:{answer}",
|
||||||
except Exception as e:
|
action_done=True,
|
||||||
logger.error(f"{self.log_prefix} 构建记忆时出错: {e}")
|
)
|
||||||
return False, f"构建记忆时出错: {e}"
|
|
||||||
|
return True, f"成功获取记忆: {answer}"
|
||||||
|
|
||||||
|
|
||||||
# 还缺一个关系的太多遗忘和对应的提取
|
# 还缺一个关系的太多遗忘和对应的提取
|
||||||
|
|
|
||||||
|
|
@ -1,25 +1,23 @@
|
||||||
from typing import List, Tuple, Type
|
from typing import List, Tuple, Type
|
||||||
|
|
||||||
# 导入新插件系统
|
# 导入新插件系统
|
||||||
from src.plugin_system import BasePlugin, ComponentInfo
|
from src.plugin_system import BasePlugin, ComponentInfo, register_plugin
|
||||||
from src.plugin_system.base.config_types import ConfigField
|
from src.plugin_system.base.config_types import ConfigField
|
||||||
|
|
||||||
# 导入依赖的系统组件
|
# 导入依赖的系统组件
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
|
|
||||||
from src.plugins.built_in.memory.build_memory import BuildMemoryAction
|
from src.plugins.built_in.memory.build_memory import GetMemoryAction, GetMemoryTool
|
||||||
|
|
||||||
logger = get_logger("relation_actions")
|
logger = get_logger("memory_build")
|
||||||
|
|
||||||
|
|
||||||
# @register_plugin
|
@register_plugin
|
||||||
class MemoryBuildPlugin(BasePlugin):
|
class MemoryBuildPlugin(BasePlugin):
|
||||||
"""关系动作插件
|
"""记忆构建插件
|
||||||
|
|
||||||
系统内置插件,提供基础的聊天交互功能:
|
系统内置插件,提供基础的聊天交互功能:
|
||||||
- Reply: 回复动作
|
- GetMemory: 获取记忆
|
||||||
- NoReply: 不回复动作
|
|
||||||
- Emoji: 表情动作
|
|
||||||
|
|
||||||
注意:插件基本信息优先从_manifest.json文件中读取
|
注意:插件基本信息优先从_manifest.json文件中读取
|
||||||
"""
|
"""
|
||||||
|
|
@ -43,9 +41,6 @@ class MemoryBuildPlugin(BasePlugin):
|
||||||
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
|
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
|
||||||
"config_version": ConfigField(type=str, default="1.1.0", description="配置文件版本"),
|
"config_version": ConfigField(type=str, default="1.1.0", description="配置文件版本"),
|
||||||
},
|
},
|
||||||
"components": {
|
|
||||||
"memory_max_memory_num": ConfigField(type=int, default=10, description="记忆最大数量"),
|
|
||||||
},
|
|
||||||
}
|
}
|
||||||
|
|
||||||
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
|
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
|
||||||
|
|
@ -53,6 +48,7 @@ class MemoryBuildPlugin(BasePlugin):
|
||||||
|
|
||||||
# --- 根据配置注册组件 ---
|
# --- 根据配置注册组件 ---
|
||||||
components = []
|
components = []
|
||||||
components.append((BuildMemoryAction.get_action_info(), BuildMemoryAction))
|
components.append((GetMemoryAction.get_action_info(), GetMemoryAction))
|
||||||
|
components.append((GetMemoryTool.get_tool_info(), GetMemoryTool))
|
||||||
|
|
||||||
return components
|
return components
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue