feat;优化了记忆检索的速度和token消耗(将question提出交给planenr)

pull/1460/head
SengokuCola 2025-12-24 18:43:32 +08:00
parent 490589b0ad
commit 0852af49f9
15 changed files with 448 additions and 152 deletions

View File

@ -1,5 +1,9 @@
# Changelog
移除 enable_jargon_detection
添加 global_memory_blacklist
## [0.12.0] - 2025-12-21
### 🌟 重大更新
- 添加思考力度机制,动态控制回复时间和长度

View File

@ -407,8 +407,8 @@ class ExpressionSelector:
# 4. 调用LLM
content, (reasoning_content, model_name, _) = await self.llm_model.generate_response_async(prompt=prompt)
print(prompt)
print(content)
# print(prompt)
# print(content)
if not content:
logger.warning("LLM返回空结果")

View File

@ -341,7 +341,7 @@ async def retrieve_concepts_with_jargon(concepts: List[str], chat_id: str) -> st
meaning = result.get("meaning", "").strip()
if found_content and meaning:
output_parts.append(f"找到 '{found_content}' 的含义为:{meaning}")
results.append("".join(output_parts))
results.append("\n".join(output_parts)) # 换行分隔每个jargon解释
logger.info(f"在jargon库中找到匹配模糊搜索: {concept},找到{len(jargon_results)}条结果")
else:
# 精确匹配
@ -350,7 +350,8 @@ async def retrieve_concepts_with_jargon(concepts: List[str], chat_id: str) -> st
meaning = result.get("meaning", "").strip()
if meaning:
output_parts.append(f"'{concept}' 为黑话或者网络简写,含义为:{meaning}")
results.append("".join(output_parts) if len(output_parts) > 1 else output_parts[0])
# 换行分隔每个jargon解释
results.append("\n".join(output_parts) if len(output_parts) > 1 else output_parts[0])
exact_matches.append(concept) # 收集精确匹配的概念,稍后统一打印
else:
# 未找到,不返回占位信息,只记录日志
@ -361,5 +362,5 @@ async def retrieve_concepts_with_jargon(concepts: List[str], chat_id: str) -> st
logger.info(f"找到黑话: {', '.join(exact_matches)},共找到{len(exact_matches)}条结果")
if results:
return "【概念检索结果】\n" + "\n".join(results) + "\n"
return "你了解以下词语可能的含义:\n" + "\n".join(results) + "\n"
return ""

View File

@ -687,7 +687,7 @@ class HeartFChatting:
return {
"action_type": "reply",
"success": True,
"result": f"回复内容{reply_text}",
"result": f"使用reply动作' {action_planner_info.action_message.processed_plain_text} '这句话进行了回复,回复内容为: '{reply_text}'",
"loop_info": loop_info,
}

View File

@ -53,7 +53,7 @@ reply
4.不要选择回复你自己发送的消息
5.不要单独对表情包进行回复
6.将上下文中所有含义不明的疑似黑话的缩写词均写入unknown_words中
7.用一句简单的话来描述当前回复场景不超过10个字
7.如果你对上下文存在疑问有需要查询的问题写入question中
{reply_action_example}
no_reply
@ -224,6 +224,25 @@ class ActionPlanner:
else:
reasoning = "未提供原因"
action_data = {key: value for key, value in action_json.items() if key not in ["action"]}
# 验证和清理 question
if "question" in action_data:
q = action_data.get("question")
if isinstance(q, str):
cleaned_q = q.strip()
if cleaned_q:
action_data["question"] = cleaned_q
else:
# 如果清理后为空字符串,移除该字段
action_data.pop("question", None)
elif q is None:
# 如果为 None移除该字段
action_data.pop("question", None)
else:
# 如果不是字符串类型,记录警告并移除
logger.warning(f"{self.log_prefix}question 格式不正确,应为字符串类型,已忽略")
action_data.pop("question", None)
# 非no_reply动作需要target_message_id
target_message = None
@ -503,18 +522,20 @@ class ActionPlanner:
name_block = f"你的名字是{bot_name}{bot_nickname},请注意哪些是你自己的发言。"
# 根据 think_mode 配置决定 reply action 的示例 JSON
# 在 JSON 中直接作为 action 参数携带 unknown_words
# 在 JSON 中直接作为 action 参数携带 unknown_words 和 question
if global_config.chat.think_mode == "classic":
reply_action_example = (
'{{"action":"reply", "target_message_id":"消息id(m+数字)", '
'"unknown_words":["词语1","词语2"]}}'
'"unknown_words":["词语1","词语2"], '
'"question":"需要查询的问题"}'
)
else:
reply_action_example = (
"5.think_level表示思考深度0表示该回复不需要思考和回忆1表示该回复需要进行回忆和思考\n"
+ '{{"action":"reply", "think_level":数值等级(0或1), '
'"target_message_id":"消息id(m+数字)", '
'"unknown_words":["词语1","词语2"]}}'
'"unknown_words":["词语1","词语2"], '
'"question":"需要查询的问题"}'
)
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")

View File

@ -947,6 +947,18 @@ class DefaultReplyer:
chat_id, message_list_before_short, chat_talking_prompt_short, unknown_words
)
# 从 chosen_actions 中提取 question仅在 reply 动作中)
question = None
if chosen_actions:
for action_info in chosen_actions:
if action_info.action_type == "reply" and isinstance(action_info.action_data, dict):
q = action_info.action_data.get("question")
if isinstance(q, str):
cleaned_q = q.strip()
if cleaned_q:
question = cleaned_q
break
# 并行执行构建任务(包括黑话解释,可配置关闭)
task_results = await asyncio.gather(
self._time_and_run_task(
@ -961,7 +973,7 @@ class DefaultReplyer:
self._time_and_run_task(self.build_personality_prompt(), "personality_prompt"),
self._time_and_run_task(
build_memory_retrieval_prompt(
chat_talking_prompt_short, sender, target, self.chat_stream, think_level=think_level
chat_talking_prompt_short, sender, target, self.chat_stream, think_level=think_level, unknown_words=unknown_words, question=question
),
"memory_retrieval",
),

View File

@ -110,6 +110,7 @@ class PrivateReplyer:
enable_tool=enable_tool,
reply_message=reply_message,
reply_reason=reply_reason,
unknown_words=unknown_words,
)
llm_response.prompt = prompt
llm_response.selected_expressions = selected_expressions
@ -611,6 +612,7 @@ class PrivateReplyer:
available_actions: Optional[Dict[str, ActionInfo]] = None,
chosen_actions: Optional[List[ActionPlannerInfo]] = None,
enable_tool: bool = True,
unknown_words: Optional[List[str]] = None,
) -> Tuple[str, List[int]]:
"""
构建回复器上下文
@ -709,12 +711,24 @@ class PrivateReplyer:
else:
jargon_coroutine = self._build_disabled_jargon_explanation()
# 从 chosen_actions 中提取 question仅在 reply 动作中)
question = None
if chosen_actions:
for action_info in chosen_actions:
if action_info.action_type == "reply" and isinstance(action_info.action_data, dict):
q = action_info.action_data.get("question")
if isinstance(q, str):
cleaned_q = q.strip()
if cleaned_q:
question = cleaned_q
break
# 并行执行九个构建任务(包括黑话解释,可配置关闭)
task_results = await asyncio.gather(
self._time_and_run_task(
self.build_expression_habits(chat_talking_prompt_short, target, reply_reason), "expression_habits"
),
self._time_and_run_task(self.build_relation_info(chat_talking_prompt_short, sender), "relation_info"),
# self._time_and_run_task(self.build_relation_info(chat_talking_prompt_short, sender), "relation_info"),
self._time_and_run_task(
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
),
@ -723,7 +737,7 @@ class PrivateReplyer:
self._time_and_run_task(self.build_personality_prompt(), "personality_prompt"),
self._time_and_run_task(
build_memory_retrieval_prompt(
chat_talking_prompt_short, sender, target, self.chat_stream, self.tool_executor
chat_talking_prompt_short, sender, target, self.chat_stream, think_level=1, unknown_words=unknown_words, question=question
),
"memory_retrieval",
),

View File

@ -743,13 +743,13 @@ class StatisticOutputTask(AsyncTask):
"""
if stats[TOTAL_REQ_CNT] <= 0:
return ""
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.2f}¥ {:>10.1f} {:>10.1f} {:>12} {:>12}"
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.2f}¥ {:>10.1f} {:>10.1f} {:>12} {:>12} {:>12}"
total_replies = stats.get(TOTAL_REPLY_CNT, 0)
output = [
"按模型分类统计:",
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费 平均耗时(秒) 标准差(秒) 每次回复平均调用次数 每次回复平均Token数",
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费 平均耗时(秒) 标准差(秒) 每次回复平均调用次数 每次回复平均Token数 每次调用平均Token",
]
for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()):
name = f"{model_name[:29]}..." if len(model_name) > 32 else model_name
@ -764,6 +764,9 @@ class StatisticOutputTask(AsyncTask):
avg_count_per_reply = count / total_replies if total_replies > 0 else 0.0
avg_tokens_per_reply = tokens / total_replies if total_replies > 0 else 0.0
# 计算每次调用平均token
avg_tokens_per_call = tokens / count if count > 0 else 0.0
# 格式化大数字
formatted_count = _format_large_number(count)
formatted_in_tokens = _format_large_number(in_tokens)
@ -771,6 +774,7 @@ class StatisticOutputTask(AsyncTask):
formatted_tokens = _format_large_number(tokens)
formatted_avg_count = _format_large_number(avg_count_per_reply) if total_replies > 0 else "N/A"
formatted_avg_tokens = _format_large_number(avg_tokens_per_reply) if total_replies > 0 else "N/A"
formatted_avg_tokens_per_call = _format_large_number(avg_tokens_per_call) if count > 0 else "N/A"
output.append(
data_fmt.format(
@ -784,6 +788,7 @@ class StatisticOutputTask(AsyncTask):
std_time_cost,
formatted_avg_count,
formatted_avg_tokens,
formatted_avg_tokens_per_call,
)
)
@ -797,13 +802,13 @@ class StatisticOutputTask(AsyncTask):
"""
if stats[TOTAL_REQ_CNT] <= 0:
return ""
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.2f}¥ {:>10.1f} {:>10.1f} {:>12} {:>12}"
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.2f}¥ {:>10.1f} {:>10.1f} {:>12} {:>12} {:>12}"
total_replies = stats.get(TOTAL_REPLY_CNT, 0)
output = [
"按模块分类统计:",
" 模块名称 调用次数 输入Token 输出Token Token总量 累计花费 平均耗时(秒) 标准差(秒) 每次回复平均调用次数 每次回复平均Token数",
" 模块名称 调用次数 输入Token 输出Token Token总量 累计花费 平均耗时(秒) 标准差(秒) 每次回复平均调用次数 每次回复平均Token数 每次调用平均Token",
]
for module_name, count in sorted(stats[REQ_CNT_BY_MODULE].items()):
name = f"{module_name[:29]}..." if len(module_name) > 32 else module_name
@ -818,6 +823,9 @@ class StatisticOutputTask(AsyncTask):
avg_count_per_reply = count / total_replies if total_replies > 0 else 0.0
avg_tokens_per_reply = tokens / total_replies if total_replies > 0 else 0.0
# 计算每次调用平均token
avg_tokens_per_call = tokens / count if count > 0 else 0.0
# 格式化大数字
formatted_count = _format_large_number(count)
formatted_in_tokens = _format_large_number(in_tokens)
@ -825,6 +833,7 @@ class StatisticOutputTask(AsyncTask):
formatted_tokens = _format_large_number(tokens)
formatted_avg_count = _format_large_number(avg_count_per_reply) if total_replies > 0 else "N/A"
formatted_avg_tokens = _format_large_number(avg_tokens_per_reply) if total_replies > 0 else "N/A"
formatted_avg_tokens_per_call = _format_large_number(avg_tokens_per_call) if count > 0 else "N/A"
output.append(
data_fmt.format(
@ -838,6 +847,7 @@ class StatisticOutputTask(AsyncTask):
std_time_cost,
formatted_avg_count,
formatted_avg_tokens,
formatted_avg_tokens_per_call,
)
)
@ -935,11 +945,12 @@ class StatisticOutputTask(AsyncTask):
f"<td>{stat_data[STD_TIME_COST_BY_MODEL][model_name]:.1f} 秒</td>"
f"<td>{_format_large_number(count / total_replies, html=True) if total_replies > 0 else 'N/A'}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_MODEL][model_name] / total_replies, html=True) if total_replies > 0 else 'N/A'}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_MODEL][model_name] / count, html=True) if count > 0 else 'N/A'}</td>"
f"</tr>"
for model_name, count in sorted(stat_data[REQ_CNT_BY_MODEL].items())
]
if stat_data[REQ_CNT_BY_MODEL]
else ["<tr><td colspan='10' style='text-align: center; color: #999;'>暂无数据</td></tr>"]
else ["<tr><td colspan='11' style='text-align: center; color: #999;'>暂无数据</td></tr>"]
)
# 按请求类型分类统计
type_rows = "\n".join(
@ -955,11 +966,12 @@ class StatisticOutputTask(AsyncTask):
f"<td>{stat_data[STD_TIME_COST_BY_TYPE][req_type]:.1f} 秒</td>"
f"<td>{_format_large_number(count / total_replies, html=True) if total_replies > 0 else 'N/A'}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_TYPE][req_type] / total_replies, html=True) if total_replies > 0 else 'N/A'}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_TYPE][req_type] / count, html=True) if count > 0 else 'N/A'}</td>"
f"</tr>"
for req_type, count in sorted(stat_data[REQ_CNT_BY_TYPE].items())
]
if stat_data[REQ_CNT_BY_TYPE]
else ["<tr><td colspan='10' style='text-align: center; color: #999;'>暂无数据</td></tr>"]
else ["<tr><td colspan='11' style='text-align: center; color: #999;'>暂无数据</td></tr>"]
)
# 按模块分类统计
module_rows = "\n".join(
@ -975,11 +987,12 @@ class StatisticOutputTask(AsyncTask):
f"<td>{stat_data[STD_TIME_COST_BY_MODULE][module_name]:.1f} 秒</td>"
f"<td>{_format_large_number(count / total_replies, html=True) if total_replies > 0 else 'N/A'}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_MODULE][module_name] / total_replies, html=True) if total_replies > 0 else 'N/A'}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_MODULE][module_name] / count, html=True) if count > 0 else 'N/A'}</td>"
f"</tr>"
for module_name, count in sorted(stat_data[REQ_CNT_BY_MODULE].items())
]
if stat_data[REQ_CNT_BY_MODULE]
else ["<tr><td colspan='10' style='text-align: center; color: #999;'>暂无数据</td></tr>"]
else ["<tr><td colspan='11' style='text-align: center; color: #999;'>暂无数据</td></tr>"]
)
# 聊天消息统计
@ -1054,7 +1067,7 @@ class StatisticOutputTask(AsyncTask):
<h2>按模型分类统计</h2>
<div class=\"table-wrap\">
<table>
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th><th>每次回复平均调用次数</th><th>每次回复平均Token数</th></tr></thead>
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th><th>每次回复平均调用次数</th><th>每次回复平均Token数</th><th>每次调用平均Token</th></tr></thead>
<tbody>
{model_rows}
</tbody>
@ -1065,7 +1078,7 @@ class StatisticOutputTask(AsyncTask):
<div class=\"table-wrap\">
<table>
<thead>
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th><th>每次回复平均调用次数</th><th>每次回复平均Token数</th></tr>
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th><th>每次回复平均调用次数</th><th>每次回复平均Token数</th><th>每次调用平均Token</th></tr>
</thead>
<tbody>
{module_rows}
@ -1077,7 +1090,7 @@ class StatisticOutputTask(AsyncTask):
<div class=\"table-wrap\">
<table>
<thead>
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th><th>每次回复平均调用次数</th><th>每次回复平均Token数</th></tr>
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时()</th><th>标准差()</th><th>每次回复平均调用次数</th><th>每次回复平均Token数</th><th>每次调用平均Token</th></tr>
</thead>
<tbody>
{type_rows}

View File

@ -260,12 +260,32 @@ class MemoryConfig(ConfigBase):
agent_timeout_seconds: float = 120.0
"""Agent超时时间"""
enable_jargon_detection: bool = True
"""记忆检索过程中是否启用黑话识别"""
global_memory: bool = False
"""是否允许记忆检索在聊天记录中进行全局查询忽略当前chat_id仅对 search_chat_history 等工具生效)"""
global_memory_blacklist: list[str] = field(default_factory=lambda: [])
"""
全局记忆黑名单当启用全局记忆时不将特定聊天流纳入检索
格式: ["platform:id:type", ...]
示例:
[
"qq:1919810:private", # 排除特定私聊
"qq:114514:group", # 排除特定群聊
]
说明:
- 当启用全局记忆时黑名单中的聊天流不会被检索
- 当在黑名单中的聊天流进行查询时仅使用该聊天流的本地记忆
"""
planner_question: bool = True
"""
是否使用 Planner 提供的 question 作为记忆检索问题
- True: Planner reply 动作中提供了 question 直接使用该问题进行记忆检索跳过 LLM 生成问题的步骤
- False: 沿用旧模式使用 LLM 生成问题
"""
def __post_init__(self):
"""验证配置值"""
if self.max_agent_iterations < 1:

View File

@ -912,8 +912,11 @@ class ChatHistorySummarizer:
result = _parse_with_quote_fix(extracted_json)
keywords = result.get("keywords", [])
summary = result.get("summary", "无概括")
summary = result.get("summary", "")
key_point = result.get("key_point", [])
if not (keywords and summary) and key_point:
logger.warning(f"{self.log_prefix} LLM返回的JSON中缺少字段原文\n{response}")
# 确保keywords和key_point是列表
if isinstance(keywords, str):

View File

@ -2,7 +2,7 @@ import time
import json
import asyncio
import re
from typing import List, Dict, Any, Optional, Tuple, Set
from typing import List, Dict, Any, Optional, Tuple
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
@ -11,7 +11,8 @@ from src.common.database.database_model import ThinkingBack
from src.memory_system.retrieval_tools import get_tool_registry, init_all_tools
from src.memory_system.memory_utils import parse_questions_json
from src.llm_models.payload_content.message import MessageBuilder, RoleType, Message
from src.bw_learner.jargon_explainer import match_jargon_from_text, retrieve_concepts_with_jargon
from src.chat.message_receive.chat_stream import get_chat_manager
from src.bw_learner.jargon_explainer import retrieve_concepts_with_jargon
logger = get_logger("memory_retrieval")
@ -100,6 +101,7 @@ def init_memory_retrieval_prompt():
**工具说明**
- 如果涉及过往事件或者查询某个过去可能提到过的概念或者某段时间发生的事件可以使用聊天记录查询工具查询过往事件
- 如果涉及人物可以使用人物信息查询工具查询人物信息
- 如果遇到不熟悉的词语缩写黑话或网络用语可以使用query_words工具查询其含义
- 如果没有可靠信息且查询时间充足或者不确定查询类别也可以使用lpmm知识库查询作为辅助信息
**思考**
@ -202,7 +204,6 @@ async def _react_agent_solve_question(
max_iterations: int = 5,
timeout: float = 30.0,
initial_info: str = "",
initial_jargon_concepts: Optional[List[str]] = None,
) -> Tuple[bool, str, List[Dict[str, Any]], bool]:
"""使用ReAct架构的Agent来解决问题
@ -211,28 +212,29 @@ async def _react_agent_solve_question(
chat_id: 聊天ID
max_iterations: 最大迭代次数
timeout: 超时时间
initial_info: 初始信息如概念检索结果将作为collected_info的初始值
initial_jargon_concepts: 预先已解析过的黑话列表避免重复解释
initial_info: 初始信息将作为collected_info的初始值
Returns:
Tuple[bool, str, List[Dict[str, Any]], bool]: (是否找到答案, 答案内容, 思考步骤列表, 是否超时)
"""
start_time = time.time()
collected_info = initial_info if initial_info else ""
enable_jargon_detection = global_config.memory.enable_jargon_detection
seen_jargon_concepts: Set[str] = set()
if enable_jargon_detection and initial_jargon_concepts:
for concept in initial_jargon_concepts:
concept = (concept or "").strip()
if concept:
seen_jargon_concepts.add(concept)
# 构造日志前缀:[聊天流名称],用于在日志中标识聊天流
try:
chat_name = get_chat_manager().get_stream_name(chat_id) or chat_id
except Exception:
chat_name = chat_id
react_log_prefix = f"[{chat_name}] "
thinking_steps = []
is_timeout = False
conversation_messages: List[Message] = []
first_head_prompt: Optional[str] = None # 保存第一次使用的head_prompt用于日志显示
last_tool_name: Optional[str] = None # 记录最后一次使用的工具名称
# 正常迭代max_iterations 次(最终评估单独处理,不算在迭代中)
for iteration in range(max_iterations):
# 使用 while 循环,支持额外迭代
iteration = 0
max_iterations_with_extra = max_iterations
while iteration < max_iterations_with_extra:
# 检查超时
if time.time() - start_time > timeout:
logger.warning(f"ReAct Agent超时已迭代{iteration}")
@ -475,7 +477,7 @@ async def _react_agent_solve_question(
step["observations"] = ["检测到finish_search文本格式调用找到答案"]
thinking_steps.append(step)
logger.info(
f"ReAct Agent {iteration + 1} 次迭代 通过finish_search文本格式找到关于问题{question}的答案: {parsed_answer}"
f"{react_log_prefix}{iteration + 1} 次迭代 通过finish_search文本格式找到关于问题{question}的答案: {parsed_answer}"
)
_log_conversation_messages(
@ -488,7 +490,7 @@ async def _react_agent_solve_question(
else:
# found_answer为True但没有提供answer视为错误继续迭代
logger.warning(
f"ReAct Agent {iteration + 1} 次迭代 finish_search文本格式found_answer为True但未提供answer"
f"{react_log_prefix}{iteration + 1} 次迭代 finish_search文本格式found_answer为True但未提供answer"
)
else:
# 未找到答案,直接退出查询
@ -497,7 +499,9 @@ async def _react_agent_solve_question(
)
step["observations"] = ["检测到finish_search文本格式调用未找到答案"]
thinking_steps.append(step)
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 通过finish_search文本格式判断未找到答案")
logger.info(
f"{react_log_prefix}{iteration + 1} 次迭代 通过finish_search文本格式判断未找到答案"
)
_log_conversation_messages(
conversation_messages,
@ -509,10 +513,12 @@ async def _react_agent_solve_question(
# 如果没有检测到finish_search格式记录思考过程继续下一轮迭代
step["observations"] = [f"思考完成,但未调用工具。响应: {response}"]
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 思考完成但未调用工具: {response}")
logger.info(
f"{react_log_prefix}{iteration + 1} 次迭代 思考完成但未调用工具: {response}"
)
collected_info += f"思考: {response}"
else:
logger.warning(f"ReAct Agent {iteration + 1} 次迭代 无工具调用且无响应")
logger.warning(f"{react_log_prefix}{iteration + 1} 次迭代 无工具调用且无响应")
step["observations"] = ["无响应且无工具调用"]
thinking_steps.append(step)
continue
@ -541,7 +547,7 @@ async def _react_agent_solve_question(
step["observations"] = ["检测到finish_search工具调用找到答案"]
thinking_steps.append(step)
logger.info(
f"ReAct Agent {iteration + 1} 次迭代 通过finish_search工具找到关于问题{question}的答案: {finish_search_answer}"
f"{react_log_prefix}{iteration + 1} 次迭代 通过finish_search工具找到关于问题{question}的答案: {finish_search_answer}"
)
_log_conversation_messages(
@ -554,14 +560,16 @@ async def _react_agent_solve_question(
else:
# found_answer为True但没有提供answer视为错误
logger.warning(
f"ReAct Agent {iteration + 1} 次迭代 finish_search工具found_answer为True但未提供answer"
f"{react_log_prefix}{iteration + 1} 次迭代 finish_search工具found_answer为True但未提供answer"
)
else:
# 未找到答案,直接退出查询
step["actions"].append({"action_type": "finish_search", "action_params": {"found_answer": False}})
step["observations"] = ["检测到finish_search工具调用未找到答案"]
thinking_steps.append(step)
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 通过finish_search工具判断未找到答案")
logger.info(
f"{react_log_prefix}{iteration + 1} 次迭代 通过finish_search工具判断未找到答案"
)
_log_conversation_messages(
conversation_messages,
@ -578,13 +586,16 @@ async def _react_agent_solve_question(
tool_args = tool_call.args or {}
logger.debug(
f"ReAct Agent {iteration + 1} 次迭代 工具调用 {i + 1}/{len(tool_calls)}: {tool_name}({tool_args})"
f"{react_log_prefix}{iteration + 1} 次迭代 工具调用 {i + 1}/{len(tool_calls)}: {tool_name}({tool_args})"
)
# 跳过finish_search工具调用已经在上面处理过了
if tool_name == "finish_search":
continue
# 记录最后一次使用的工具名称(用于判断是否需要额外迭代)
last_tool_name = tool_name
# 普通工具调用
tool = tool_registry.get_tool(tool_name)
if tool:
@ -604,14 +615,18 @@ async def _react_agent_solve_question(
return f"查询{tool_name_str}({param_str})的结果:{observation}"
except Exception as e:
error_msg = f"工具执行失败: {str(e)}"
logger.error(f"ReAct Agent 第 {iter_num + 1} 次迭代 工具 {tool_name_str} {error_msg}")
logger.error(
f"{react_log_prefix}{iter_num + 1} 次迭代 工具 {tool_name_str} {error_msg}"
)
return f"查询{tool_name_str}失败: {error_msg}"
tool_tasks.append(execute_single_tool(tool, tool_params, tool_name, iteration))
step["actions"].append({"action_type": tool_name, "action_params": tool_args})
else:
error_msg = f"未知的工具类型: {tool_name}"
logger.warning(f"ReAct Agent 第 {iteration + 1} 次迭代 工具 {i + 1}/{len(tool_calls)} {error_msg}")
logger.warning(
f"{react_log_prefix}{iteration + 1} 次迭代 工具 {i + 1}/{len(tool_calls)} {error_msg}"
)
tool_tasks.append(asyncio.create_task(asyncio.sleep(0, result=f"查询{tool_name}失败: {error_msg}")))
# 并行执行所有工具
@ -622,31 +637,16 @@ async def _react_agent_solve_question(
for i, (tool_call_item, observation) in enumerate(zip(tool_calls, observations, strict=False)):
if isinstance(observation, Exception):
observation = f"工具执行异常: {str(observation)}"
logger.error(f"ReAct Agent 第 {iteration + 1} 次迭代 工具 {i + 1} 执行异常: {observation}")
logger.error(
f"{react_log_prefix}{iteration + 1} 次迭代 工具 {i + 1} 执行异常: {observation}"
)
observation_text = observation if isinstance(observation, str) else str(observation)
stripped_observation = observation_text.strip()
step["observations"].append(observation_text)
collected_info += f"\n{observation_text}\n"
if stripped_observation:
# 检查工具输出中是否有新的jargon如果有则追加到工具结果中
if enable_jargon_detection:
jargon_concepts = match_jargon_from_text(stripped_observation, chat_id)
if jargon_concepts:
new_concepts = []
for concept in jargon_concepts:
normalized_concept = concept.strip()
if normalized_concept and normalized_concept not in seen_jargon_concepts:
new_concepts.append(normalized_concept)
seen_jargon_concepts.add(normalized_concept)
if new_concepts:
jargon_info = await retrieve_concepts_with_jargon(new_concepts, chat_id)
if jargon_info:
# 将jargon查询结果追加到工具结果中
observation_text += f"\n\n{jargon_info}"
collected_info += f"\n{jargon_info}\n"
logger.info(f"工具输出触发黑话解析: {new_concepts}")
# 不再自动检测工具输出中的jargon改为通过 query_words 工具主动查询
tool_builder = MessageBuilder()
tool_builder.set_role(RoleType.Tool)
tool_builder.add_text_content(observation_text)
@ -655,15 +655,24 @@ async def _react_agent_solve_question(
thinking_steps.append(step)
# 检查是否需要额外迭代:如果最后一次使用的工具是 search_chat_history 且达到最大迭代次数,额外增加一回合
if iteration + 1 >= max_iterations and last_tool_name == "search_chat_history" and not is_timeout:
max_iterations_with_extra = max_iterations + 1
logger.info(
f"{react_log_prefix}达到最大迭代次数(已迭代{iteration + 1}次),最后一次使用工具为 search_chat_history额外增加一回合尝试"
)
iteration += 1
# 正常迭代结束后,如果达到最大迭代次数或超时,执行最终评估
# 最终评估单独处理,不算在迭代中
should_do_final_evaluation = False
if is_timeout:
should_do_final_evaluation = True
logger.warning(f"ReAct Agent超时已迭代{iteration + 1}次,进入最终评估")
elif iteration + 1 >= max_iterations:
logger.warning(f"{react_log_prefix}超时,已迭代{iteration}次,进入最终评估")
elif iteration >= max_iterations:
should_do_final_evaluation = True
logger.info(f"ReAct Agent达到最大迭代次数已迭代{iteration + 1}次),进入最终评估")
logger.info(f"{react_log_prefix}达到最大迭代次数(已迭代{iteration}次),进入最终评估")
if should_do_final_evaluation:
# 获取必要变量用于最终评估
@ -766,8 +775,8 @@ async def _react_agent_solve_question(
return False, "最终评估阶段LLM调用失败", thinking_steps, is_timeout
if global_config.debug.show_memory_prompt:
logger.info(f"ReAct Agent 最终评估Prompt: {evaluation_prompt}")
logger.info(f"ReAct Agent 最终评估响应: {eval_response}")
logger.info(f"{react_log_prefix}最终评估Prompt: {evaluation_prompt}")
logger.info(f"{react_log_prefix}最终评估响应: {eval_response}")
# 从最终评估响应中提取found_answer或not_enough_info
found_answer_content = None
@ -998,7 +1007,6 @@ async def _process_single_question(
chat_id: str,
context: str,
initial_info: str = "",
initial_jargon_concepts: Optional[List[str]] = None,
max_iterations: Optional[int] = None,
) -> Optional[str]:
"""处理单个问题的查询
@ -1007,8 +1015,8 @@ async def _process_single_question(
question: 要查询的问题
chat_id: 聊天ID
context: 上下文信息
initial_info: 初始信息如概念检索结果将传递给ReAct Agent
initial_jargon_concepts: 已经处理过的黑话概念列表用于ReAct阶段的去重
initial_info: 初始信息将传递给ReAct Agent
max_iterations: 最大迭代次数
Returns:
Optional[str]: 如果找到答案返回格式化的结果字符串否则返回None
@ -1022,8 +1030,6 @@ async def _process_single_question(
# 直接使用ReAct Agent查询不再从thinking_back获取缓存
# logger.info(f"使用ReAct Agent查询问题: {question[:50]}...")
jargon_concepts_for_agent = initial_jargon_concepts if global_config.memory.enable_jargon_detection else None
# 如果未指定max_iterations使用配置的默认值
if max_iterations is None:
max_iterations = global_config.memory.max_agent_iterations
@ -1034,7 +1040,6 @@ async def _process_single_question(
max_iterations=max_iterations,
timeout=global_config.memory.agent_timeout_seconds,
initial_info=question_initial_info,
initial_jargon_concepts=jargon_concepts_for_agent,
)
# 存储查询历史到数据库(超时时不存储)
@ -1062,6 +1067,8 @@ async def build_memory_retrieval_prompt(
target: str,
chat_stream,
think_level: int = 1,
unknown_words: Optional[List[str]] = None,
question: Optional[str] = None,
) -> str:
"""构建记忆检索提示
使用两段式查询第一步生成问题第二步使用ReAct Agent查询答案
@ -1071,14 +1078,33 @@ async def build_memory_retrieval_prompt(
sender: 发送者名称
target: 目标消息内容
chat_stream: 聊天流对象
tool_executor: 工具执行器保留参数以兼容接口
think_level: 思考深度等级
unknown_words: Planner 提供的未知词语列表优先使用此列表而不是从聊天记录匹配
question: Planner 提供的问题 planner_question 配置开启时直接使用此问题进行检索
Returns:
str: 记忆检索结果字符串
"""
start_time = time.time()
logger.info(f"检测是否需要回忆,元消息:{message[:30]}...,消息长度: {len(message)}")
# 构造日志前缀:[聊天流名称],用于在日志中标识聊天流(优先群名称/用户昵称)
try:
group_info = chat_stream.group_info
user_info = chat_stream.user_info
# 群聊优先使用群名称
if group_info is not None and getattr(group_info, "group_name", None):
stream_name = group_info.group_name.strip() or str(group_info.group_id)
# 私聊使用用户昵称
elif user_info is not None and getattr(user_info, "user_nickname", None):
stream_name = user_info.user_nickname.strip() or str(user_info.user_id)
# 兜底使用 stream_id
else:
stream_name = chat_stream.stream_id
except Exception:
stream_name = chat_stream.stream_id
log_prefix = f"[{stream_name}] " if stream_name else ""
logger.info(f"{log_prefix}检测是否需要回忆,元消息:{message[:30]}...,消息长度: {len(message)}")
try:
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
bot_name = global_config.bot.nickname
@ -1089,63 +1115,78 @@ async def build_memory_retrieval_prompt(
if not recent_query_history:
recent_query_history = "最近没有查询记录。"
# 第一步:生成问题
question_prompt = await global_prompt_manager.format_prompt(
"memory_retrieval_question_prompt",
bot_name=bot_name,
time_now=time_now,
chat_history=message,
recent_query_history=recent_query_history,
sender=sender,
target_message=target,
)
success, response, reasoning_content, model_name = await llm_api.generate_with_model(
question_prompt,
model_config=model_config.model_task_config.tool_use,
request_type="memory.question",
)
if global_config.debug.show_memory_prompt:
logger.info(f"记忆检索问题生成提示词: {question_prompt}")
# logger.info(f"记忆检索问题生成响应: {response}")
if not success:
logger.error(f"LLM生成问题失败: {response}")
return ""
# 解析概念列表和问题列表
_, questions = parse_questions_json(response)
if questions:
logger.info(f"解析到 {len(questions)} 个问题: {questions}")
enable_jargon_detection = global_config.memory.enable_jargon_detection
concepts: List[str] = []
if enable_jargon_detection:
# 使用匹配逻辑自动识别聊天中的黑话概念
concepts = match_jargon_from_text(message, chat_id)
if concepts:
logger.info(f"黑话匹配命中 {len(concepts)} 个概念: {concepts}")
# 第一步:生成问题或使用 Planner 提供的问题
questions = []
# 如果 planner_question 配置开启,只使用 Planner 提供的问题,不使用旧模式
if global_config.memory.planner_question:
if question and isinstance(question, str) and question.strip():
# 清理和验证 question
cleaned_question = question.strip()
questions = [cleaned_question]
logger.info(f"{log_prefix}使用 Planner 提供的 question: {cleaned_question}")
else:
logger.debug("黑话匹配未命中任何概念")
# planner_question 开启但没有提供 question跳过记忆检索
logger.debug(f"{log_prefix}planner_question 已开启但未提供 question跳过记忆检索")
end_time = time.time()
logger.info(f"{log_prefix}无当次查询,不返回任何结果,耗时: {(end_time - start_time):.3f}")
return ""
else:
logger.debug("已禁用记忆检索中的黑话识别")
# planner_question 关闭使用旧模式LLM 生成问题
question_prompt = await global_prompt_manager.format_prompt(
"memory_retrieval_question_prompt",
bot_name=bot_name,
time_now=time_now,
chat_history=message,
recent_query_history=recent_query_history,
sender=sender,
target_message=target,
)
# 对匹配到的概念进行jargon检索作为初始信息
success, response, reasoning_content, model_name = await llm_api.generate_with_model(
question_prompt,
model_config=model_config.model_task_config.tool_use,
request_type="memory.question",
)
if global_config.debug.show_memory_prompt:
logger.info(f"{log_prefix}记忆检索问题生成提示词: {question_prompt}")
# logger.info(f"记忆检索问题生成响应: {response}")
if not success:
logger.error(f"{log_prefix}LLM生成问题失败: {response}")
return ""
# 解析概念列表和问题列表
_, questions = parse_questions_json(response)
if questions:
logger.info(f"{log_prefix}解析到 {len(questions)} 个问题: {questions}")
# 初始阶段:使用 Planner 提供的 unknown_words 进行检索(如果提供)
initial_info = ""
if enable_jargon_detection and concepts:
concept_info = await retrieve_concepts_with_jargon(concepts, chat_id)
if concept_info:
initial_info += concept_info
logger.debug(f"概念检索完成,结果: {concept_info}")
else:
logger.debug("概念检索未找到任何结果")
if unknown_words and len(unknown_words) > 0:
# 清理和去重 unknown_words
cleaned_concepts = []
for word in unknown_words:
if isinstance(word, str):
cleaned = word.strip()
if cleaned:
cleaned_concepts.append(cleaned)
if cleaned_concepts:
# 对匹配到的概念进行jargon检索作为初始信息
concept_info = await retrieve_concepts_with_jargon(cleaned_concepts, chat_id)
if concept_info:
initial_info += concept_info
logger.info(
f"{log_prefix}使用 Planner 提供的 unknown_words{len(cleaned_concepts)} 个概念,检索结果: {concept_info[:100]}..."
)
else:
logger.debug(f"{log_prefix}unknown_words 检索未找到任何结果")
if not questions:
logger.debug("模型认为不需要检索记忆或解析失败,不返回任何查询结果")
logger.debug(f"{log_prefix}模型认为不需要检索记忆或解析失败,不返回任何查询结果")
end_time = time.time()
logger.info(f"无当次查询,不返回任何结果,耗时: {(end_time - start_time):.3f}")
logger.info(f"{log_prefix}无当次查询,不返回任何结果,耗时: {(end_time - start_time):.3f}")
return ""
# 第二步:并行处理所有问题(使用配置的最大迭代次数和超时时间)
@ -1157,17 +1198,16 @@ async def build_memory_retrieval_prompt(
max_iterations = base_max_iterations
timeout_seconds = global_config.memory.agent_timeout_seconds
logger.debug(
f"问题数量: {len(questions)}think_level={think_level},设置最大迭代次数: {max_iterations}(基础值: {base_max_iterations}),超时时间: {timeout_seconds}"
f"{log_prefix}问题数量: {len(questions)}think_level={think_level},设置最大迭代次数: {max_iterations}(基础值: {base_max_iterations}),超时时间: {timeout_seconds}"
)
# 并行处理所有问题,将概念检索结果作为初始信息传递
# 并行处理所有问题
question_tasks = [
_process_single_question(
question=question,
chat_id=chat_id,
context=message,
initial_info=initial_info,
initial_jargon_concepts=concepts if enable_jargon_detection else None,
max_iterations=max_iterations,
)
for question in questions
@ -1180,7 +1220,7 @@ async def build_memory_retrieval_prompt(
question_results: List[str] = []
for i, result in enumerate(results):
if isinstance(result, Exception):
logger.error(f"处理问题 '{questions[i]}' 时发生异常: {result}")
logger.error(f"{log_prefix}处理问题 '{questions[i]}' 时发生异常: {result}")
elif result is not None:
question_results.append(result)
@ -1216,14 +1256,14 @@ async def build_memory_retrieval_prompt(
current_count = len(question_results)
cached_count = len(all_results) - current_count
logger.info(
f"记忆检索成功,耗时: {(end_time - start_time):.3f}秒,"
f"{log_prefix}记忆检索成功,耗时: {(end_time - start_time):.3f}秒,"
f"当前查询 {current_count} 条记忆,缓存 {cached_count} 条记忆,共 {len(all_results)} 条记忆"
)
return f"你回忆起了以下信息:\n{retrieved_memory}\n如果与回复内容相关,可以参考这些回忆的信息。\n"
else:
logger.debug("所有问题均未找到答案,且无缓存答案")
logger.debug(f"{log_prefix}所有问题均未找到答案,且无缓存答案")
return ""
except Exception as e:
logger.error(f"记忆检索时发生异常: {str(e)}")
logger.error(f"{log_prefix}记忆检索时发生异常: {str(e)}")
return ""

View File

@ -14,6 +14,7 @@ from .tool_registry import (
from .query_chat_history import register_tool as register_query_chat_history
from .query_lpmm_knowledge import register_tool as register_lpmm_knowledge
from .query_person_info import register_tool as register_query_person_info
from .query_words import register_tool as register_query_words
from .found_answer import register_tool as register_finish_search
from src.config.config import global_config
@ -22,6 +23,7 @@ def init_all_tools():
"""初始化并注册所有记忆检索工具"""
register_query_chat_history()
register_query_person_info()
register_query_words() # 注册query_words工具
register_finish_search() # 注册finish_search工具
if global_config.lpmm_knowledge.lpmm_mode == "agent":

View File

@ -4,7 +4,7 @@
"""
import json
from typing import Optional
from typing import Optional, Set
from datetime import datetime
from src.common.logger import get_logger
@ -16,6 +16,72 @@ from .tool_registry import register_memory_retrieval_tool
logger = get_logger("memory_retrieval_tools")
def _parse_blacklist_to_chat_ids(blacklist: list[str]) -> Set[str]:
"""将黑名单配置platform:id:type格式转换为chat_id集合
Args:
blacklist: 黑名单配置列表格式为 ["platform:id:type", ...]
Returns:
Set[str]: chat_id集合
"""
chat_ids = set()
if not blacklist:
return chat_ids
try:
from src.chat.message_receive.chat_stream import get_chat_manager
chat_manager = get_chat_manager()
for blacklist_item in blacklist:
if not isinstance(blacklist_item, str):
continue
try:
parts = blacklist_item.split(":")
if len(parts) != 3:
logger.warning(f"黑名单配置格式错误,应为 platform:id:type实际: {blacklist_item}")
continue
platform = parts[0]
id_str = parts[1]
stream_type = parts[2]
# 判断是否为群聊
is_group = stream_type == "group"
# 转换为chat_id
chat_id = chat_manager.get_stream_id(platform, str(id_str), is_group=is_group)
if chat_id:
chat_ids.add(chat_id)
else:
logger.warning(f"无法将黑名单配置转换为chat_id: {blacklist_item}")
except Exception as e:
logger.warning(f"解析黑名单配置失败: {blacklist_item}, 错误: {e}")
except Exception as e:
logger.error(f"初始化黑名单chat_id集合失败: {e}")
return chat_ids
def _is_chat_id_in_blacklist(chat_id: str) -> bool:
"""检查chat_id是否在全局记忆黑名单中
Args:
chat_id: 要检查的chat_id
Returns:
bool: 如果chat_id在黑名单中返回True否则返回False
"""
blacklist = getattr(global_config.memory, "global_memory_blacklist", [])
if not blacklist:
return False
blacklist_chat_ids = _parse_blacklist_to_chat_ids(blacklist)
return chat_id in blacklist_chat_ids
async def search_chat_history(chat_id: str, keyword: Optional[str] = None, participant: Optional[str] = None) -> str:
"""根据关键词或参与人查询记忆返回匹配的记忆id、记忆标题theme和关键词keywords
@ -33,17 +99,34 @@ async def search_chat_history(chat_id: str, keyword: Optional[str] = None, parti
return "未指定查询参数需要提供keyword或participant之一"
# 构建查询条件
# 检查当前chat_id是否在黑名单中
is_current_chat_in_blacklist = _is_chat_id_in_blacklist(chat_id)
# 根据配置决定是否限制在当前 chat_id 内查询
use_global_search = global_config.memory.global_memory
# 如果当前chat_id在黑名单中强制使用本地查询
use_global_search = global_config.memory.global_memory and not is_current_chat_in_blacklist
if use_global_search:
# 全局查询所有聊天记录
query = ChatHistory.select()
logger.debug(
f"search_chat_history 启用全局查询模式,忽略 chat_id 过滤keyword={keyword}, participant={participant}"
)
# 全局查询所有聊天记录,但排除黑名单中的聊天流
blacklist_chat_ids = _parse_blacklist_to_chat_ids(global_config.memory.global_memory_blacklist)
if blacklist_chat_ids:
# 排除黑名单中的chat_id
query = ChatHistory.select().where(~(ChatHistory.chat_id.in_(blacklist_chat_ids)))
logger.debug(
f"search_chat_history 启用全局查询模式(排除黑名单 {len(blacklist_chat_ids)} 个聊天流keyword={keyword}, participant={participant}"
)
else:
# 没有黑名单,查询所有
query = ChatHistory.select()
logger.debug(
f"search_chat_history 启用全局查询模式,忽略 chat_id 过滤keyword={keyword}, participant={participant}"
)
else:
# 仅在当前聊天流内查询
if is_current_chat_in_blacklist:
logger.debug(
f"search_chat_history 当前聊天流在黑名单中强制使用本地查询chat_id={chat_id}, keyword={keyword}, participant={participant}"
)
query = ChatHistory.select().where(ChatHistory.chat_id == chat_id)
# 执行查询

View File

@ -0,0 +1,80 @@
"""
查询黑话/概念含义 - 工具实现
用于在记忆检索过程中主动查询未知词语或黑话的含义
"""
from typing import List, Optional
from src.common.logger import get_logger
from src.bw_learner.jargon_explainer import retrieve_concepts_with_jargon
from .tool_registry import register_memory_retrieval_tool
logger = get_logger("memory_retrieval_tools")
async def query_words(chat_id: str, words: str) -> str:
"""查询词语或黑话的含义
Args:
chat_id: 聊天ID
words: 要查询的词语可以是单个词语或多个词语用逗号空格等分隔
Returns:
str: 查询结果包含词语的含义解释
"""
try:
if not words or not words.strip():
return "未提供要查询的词语"
# 解析词语列表(支持逗号、空格等分隔符)
words_list = []
for separator in [",", "", " ", "\n", "\t"]:
if separator in words:
words_list = [w.strip() for w in words.split(separator) if w.strip()]
break
# 如果没有找到分隔符,整个字符串作为一个词语
if not words_list:
words_list = [words.strip()]
# 去重
unique_words = []
seen = set()
for word in words_list:
if word and word not in seen:
unique_words.append(word)
seen.add(word)
if not unique_words:
return "未提供有效的词语"
logger.info(f"查询词语含义: {unique_words}")
# 调用检索函数
result = await retrieve_concepts_with_jargon(unique_words, chat_id)
if result:
return result
else:
return f"未找到词语 '{', '.join(unique_words)}' 的含义或黑话解释"
except Exception as e:
logger.error(f"查询词语含义失败: {e}")
return f"查询失败: {str(e)}"
def register_tool():
"""注册工具"""
register_memory_retrieval_tool(
name="query_words",
description="查询词语或黑话的含义。当遇到不熟悉的词语、缩写、黑话或网络用语时,可以使用此工具查询其含义。支持查询单个或多个词语(用逗号、空格等分隔)。",
parameters=[
{
"name": "words",
"type": "string",
"description": "要查询的词语,可以是单个词语或多个词语(用逗号、空格等分隔,如:'YYDS''YYDS,内卷,996'",
"required": True,
},
],
execute_func=query_words,
)

View File

@ -1,5 +1,5 @@
[inner]
version = "7.2.5"
version = "7.2.8"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
# 如果你想要修改配置文件请递增version的值
@ -122,10 +122,13 @@ talk_value_rules = [
]
[memory]
max_agent_iterations = 3 # 记忆思考深度最低为1
agent_timeout_seconds = 200.0 # 最长回忆时间(秒)
enable_jargon_detection = true # 记忆检索过程中是否启用黑话识别
max_agent_iterations = 5 # 记忆思考深度最低为1
agent_timeout_seconds = 180.0 # 最长回忆时间(秒)
global_memory = false # 是否允许记忆检索进行全局查询
global_memory_blacklist = [
] # 全局记忆黑名单,当启用全局记忆时,不将特定聊天流纳入检索。格式: ["platform:id:type", ...],例如: ["qq:1919810:private", "qq:114514:group"]
planner_question = true # 是否使用 Planner 提供的 question 作为记忆检索问题。开启后,当 Planner 在 reply 动作中提供了 question 时,直接使用该问题进行记忆检索,跳过 LLM 生成问题的步骤;关闭后沿用旧模式,使用 LLM 生成问题
[dream]
interval_minutes = 60 # 做梦时间间隔分钟默认30分钟