mirror of https://github.com/Mai-with-u/MaiBot.git
fix:修复记忆提取的一些问题
parent
f3cbc6ed89
commit
0683f56e23
|
|
@ -1,7 +1,8 @@
|
|||
import asyncio
|
||||
import json
|
||||
import re
|
||||
from difflib import SequenceMatcher
|
||||
import time
|
||||
import random
|
||||
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import model_config
|
||||
|
|
@ -9,9 +10,12 @@ from src.common.database.database_model import MemoryChest as MemoryChestModel
|
|||
from src.common.logger import get_logger
|
||||
from src.config.config import global_config
|
||||
from src.plugin_system.apis.message_api import build_readable_messages
|
||||
import time
|
||||
from src.plugin_system.apis.message_api import get_raw_msg_by_timestamp_with_chat
|
||||
from json_repair import repair_json
|
||||
from .memory_utils import (
|
||||
find_best_matching_memory,
|
||||
check_title_exists_fuzzy
|
||||
)
|
||||
|
||||
logger = get_logger("memory_chest")
|
||||
|
||||
|
|
@ -146,6 +150,8 @@ class MemoryChest:
|
|||
"""
|
||||
根据问题获取答案
|
||||
"""
|
||||
logger.info(f"正在回忆问题答案: {question}")
|
||||
|
||||
title = await self.select_title_by_question(question)
|
||||
|
||||
if not title:
|
||||
|
|
@ -154,12 +160,18 @@ class MemoryChest:
|
|||
for memory in MemoryChestModel.select():
|
||||
if memory.title == title:
|
||||
content = memory.content
|
||||
|
||||
|
||||
if random.random() < 0.5:
|
||||
type = "要求原文能够较为全面的回答问题"
|
||||
else:
|
||||
type = "要求提取简短的内容"
|
||||
|
||||
prompt = f"""
|
||||
{content}
|
||||
|
||||
请根据问题:{question}
|
||||
在上方内容中,提取相关信息的原文并输出,请务必提取上面原文,不要输出其他内容:
|
||||
在上方内容中,提取相关信息的原文并输出,{type}
|
||||
请务必提取上面原文,不要输出其他内容:
|
||||
"""
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
|
|
@ -170,7 +182,7 @@ class MemoryChest:
|
|||
answer, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
|
||||
|
||||
|
||||
logger.info(f"记忆仓库获取答案: {answer}")
|
||||
logger.info(f"记忆仓库对问题 “{question}” 获取答案: {answer}")
|
||||
|
||||
# 将问题和答案存到fetched_memory_list
|
||||
if chat_id and answer:
|
||||
|
|
@ -251,7 +263,7 @@ class MemoryChest:
|
|||
selected_title = None
|
||||
|
||||
# 使用模糊查找匹配标题
|
||||
best_match = self.find_best_matching_memory(title, similarity_threshold=0.8)
|
||||
best_match = find_best_matching_memory(title, similarity_threshold=0.8)
|
||||
if best_match:
|
||||
selected_title = best_match[0] # 获取匹配的标题
|
||||
logger.info(f"记忆仓库选择标题: {selected_title} (相似度: {best_match[2]:.3f})")
|
||||
|
|
@ -407,7 +419,7 @@ class MemoryChest:
|
|||
|
||||
# 使用模糊查找匹配记忆
|
||||
try:
|
||||
best_match = self.find_best_matching_memory(title.strip(), similarity_threshold=0.8)
|
||||
best_match = find_best_matching_memory(title.strip(), similarity_threshold=0.8)
|
||||
if best_match:
|
||||
contents.append(best_match[1]) # best_match[1] 是 content
|
||||
logger.debug(f"找到记忆: {best_match[0]} (相似度: {best_match[2]:.3f})")
|
||||
|
|
@ -550,7 +562,7 @@ class MemoryChest:
|
|||
|
||||
if title:
|
||||
# 检查是否存在相似标题
|
||||
if self.check_title_exists_fuzzy(title, similarity_threshold=0.9):
|
||||
if check_title_exists_fuzzy(title, similarity_threshold=0.9):
|
||||
logger.warning(f"生成的标题 '{title}' 与现有标题相似,使用时间戳后缀")
|
||||
title = f"{title}_{int(time.time())}"
|
||||
|
||||
|
|
@ -564,143 +576,5 @@ class MemoryChest:
|
|||
logger.error(f"生成合并记忆标题时出错: {e}")
|
||||
return f"合并记忆_{int(time.time())}"
|
||||
|
||||
def fuzzy_find_memory_by_title(self, target_title: str, similarity_threshold: float = 0.9) -> list[tuple[str, str, float]]:
|
||||
"""
|
||||
根据标题模糊查找记忆
|
||||
|
||||
Args:
|
||||
target_title: 目标标题
|
||||
similarity_threshold: 相似度阈值,默认0.6
|
||||
|
||||
Returns:
|
||||
list[tuple[str, str, float]]: 匹配的记忆列表,每个元素为(title, content, similarity_score)
|
||||
"""
|
||||
try:
|
||||
# 获取所有记忆
|
||||
all_memories = MemoryChestModel.select()
|
||||
|
||||
matches = []
|
||||
for memory in all_memories:
|
||||
similarity = self._calculate_similarity(target_title, memory.title)
|
||||
if similarity >= similarity_threshold:
|
||||
matches.append((memory.title, memory.content, similarity))
|
||||
|
||||
# 按相似度降序排序
|
||||
matches.sort(key=lambda x: x[2], reverse=True)
|
||||
|
||||
logger.info(f"模糊查找标题 '{target_title}' 找到 {len(matches)} 个匹配项")
|
||||
return matches
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"模糊查找记忆时出错: {e}")
|
||||
return []
|
||||
|
||||
def _calculate_similarity(self, text1: str, text2: str) -> float:
|
||||
"""
|
||||
计算两个文本的相似度
|
||||
|
||||
Args:
|
||||
text1: 第一个文本
|
||||
text2: 第二个文本
|
||||
|
||||
Returns:
|
||||
float: 相似度分数 (0-1)
|
||||
"""
|
||||
try:
|
||||
# 预处理文本
|
||||
text1 = self._preprocess_text(text1)
|
||||
text2 = self._preprocess_text(text2)
|
||||
|
||||
# 使用SequenceMatcher计算相似度
|
||||
similarity = SequenceMatcher(None, text1, text2).ratio()
|
||||
|
||||
# 如果其中一个文本包含另一个,提高相似度
|
||||
if text1 in text2 or text2 in text1:
|
||||
similarity = max(similarity, 0.8)
|
||||
|
||||
return similarity
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"计算相似度时出错: {e}")
|
||||
return 0.0
|
||||
|
||||
def _preprocess_text(self, text: str) -> str:
|
||||
"""
|
||||
预处理文本,提高匹配准确性
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 预处理后的文本
|
||||
"""
|
||||
try:
|
||||
# 转换为小写
|
||||
text = text.lower()
|
||||
|
||||
# 移除标点符号和特殊字符
|
||||
text = re.sub(r'[^\w\s]', '', text)
|
||||
|
||||
# 移除多余空格
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"预处理文本时出错: {e}")
|
||||
return text
|
||||
|
||||
def find_best_matching_memory(self, target_title: str, similarity_threshold: float = 0.9) -> tuple[str, str, float] | None:
|
||||
"""
|
||||
查找最佳匹配的记忆
|
||||
|
||||
Args:
|
||||
target_title: 目标标题
|
||||
similarity_threshold: 相似度阈值
|
||||
|
||||
Returns:
|
||||
tuple[str, str, float] | None: 最佳匹配的记忆(title, content, similarity)或None
|
||||
"""
|
||||
try:
|
||||
matches = self.fuzzy_find_memory_by_title(target_title, similarity_threshold)
|
||||
|
||||
if matches:
|
||||
best_match = matches[0] # 已经按相似度排序,第一个是最佳匹配
|
||||
logger.info(f"找到最佳匹配: '{best_match[0]}' (相似度: {best_match[2]:.3f})")
|
||||
return best_match
|
||||
else:
|
||||
logger.info(f"未找到相似度 >= {similarity_threshold} 的记忆")
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"查找最佳匹配记忆时出错: {e}")
|
||||
return None
|
||||
|
||||
def check_title_exists_fuzzy(self, target_title: str, similarity_threshold: float = 0.9) -> bool:
|
||||
"""
|
||||
检查标题是否已存在(模糊匹配)
|
||||
|
||||
Args:
|
||||
target_title: 目标标题
|
||||
similarity_threshold: 相似度阈值,默认0.8(较高阈值避免误判)
|
||||
|
||||
Returns:
|
||||
bool: 是否存在相似标题
|
||||
"""
|
||||
try:
|
||||
matches = self.fuzzy_find_memory_by_title(target_title, similarity_threshold)
|
||||
exists = len(matches) > 0
|
||||
|
||||
if exists:
|
||||
logger.info(f"发现相似标题: '{matches[0][0]}' (相似度: {matches[0][2]:.3f})")
|
||||
else:
|
||||
logger.debug("未发现相似标题")
|
||||
|
||||
return exists
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"检查标题是否存在时出错: {e}")
|
||||
return False
|
||||
|
||||
|
||||
global_memory_chest = MemoryChest()
|
||||
|
|
@ -76,12 +76,12 @@ class HippocampusToMemoryChestTask(AsyncTask):
|
|||
break
|
||||
|
||||
# 如果剩余节点不足10个,使用所有剩余节点
|
||||
if len(remaining_nodes) < 15:
|
||||
if len(remaining_nodes) < 5:
|
||||
selected_nodes = remaining_nodes
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:剩余节点不足10个({len(remaining_nodes)}个),使用所有剩余节点")
|
||||
else:
|
||||
# 随机选择10个节点
|
||||
selected_nodes = random.sample(remaining_nodes, 15)
|
||||
selected_nodes = random.sample(remaining_nodes, 5)
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:选择了 {len(selected_nodes)} 个节点")
|
||||
|
||||
# 拼接节点内容
|
||||
|
|
|
|||
|
|
@ -60,10 +60,10 @@ class MemoryManagementTask(AsyncTask):
|
|||
return 3600
|
||||
elif percentage < 0.7:
|
||||
# 大于等于50%,每300秒执行一次
|
||||
return 600
|
||||
return 1800
|
||||
elif percentage < 0.9:
|
||||
# 大于等于70%,每120秒执行一次
|
||||
return 120
|
||||
return 300
|
||||
elif percentage < 1.2:
|
||||
return 30
|
||||
else:
|
||||
|
|
@ -107,15 +107,15 @@ class MemoryManagementTask(AsyncTask):
|
|||
logger.info(f"[记忆管理] 随机选择的记忆标题: {selected_title}")
|
||||
|
||||
# 执行choose_merge_target获取相关记忆内容
|
||||
related_contents = await global_memory_chest.choose_merge_target(selected_title)
|
||||
if not related_contents:
|
||||
related_contents_titles = await global_memory_chest.choose_merge_target(selected_title)
|
||||
if not related_contents_titles:
|
||||
logger.warning("[记忆管理] 未找到相关记忆内容,跳过合并")
|
||||
return
|
||||
|
||||
logger.info(f"[记忆管理] 找到 {len(related_contents)} 条相关记忆")
|
||||
logger.info(f"[记忆管理] 找到 {len(related_contents_titles)} 条相关记忆")
|
||||
|
||||
# 执行merge_memory合并记忆
|
||||
merged_title, merged_content = await global_memory_chest.merge_memory(related_contents)
|
||||
merged_title, merged_content = await global_memory_chest.merge_memory(related_contents_titles)
|
||||
if not merged_title or not merged_content:
|
||||
logger.warning("[记忆管理] 记忆合并失败,跳过删除")
|
||||
return
|
||||
|
|
@ -123,7 +123,7 @@ class MemoryManagementTask(AsyncTask):
|
|||
logger.info(f"[记忆管理] 记忆合并成功,新标题: {merged_title}")
|
||||
|
||||
# 删除原始记忆(包括选中的标题和相关的记忆)
|
||||
deleted_count = self._delete_original_memories(selected_title, related_contents)
|
||||
deleted_count = self._delete_original_memories(related_contents_titles)
|
||||
logger.info(f"[记忆管理] 已删除 {deleted_count} 条原始记忆")
|
||||
|
||||
logger.info("[记忆管理] 记忆管理任务完成")
|
||||
|
|
@ -147,20 +147,10 @@ class MemoryManagementTask(AsyncTask):
|
|||
logger.error(f"[记忆管理] 获取随机记忆标题时发生错误: {e}")
|
||||
return ""
|
||||
|
||||
def _delete_original_memories(self, selected_title: str, related_contents: List[str]) -> int:
|
||||
def _delete_original_memories(self, related_contents: List[str]) -> int:
|
||||
"""删除原始记忆"""
|
||||
try:
|
||||
deleted_count = 0
|
||||
|
||||
# 删除选中的标题对应的记忆
|
||||
try:
|
||||
deleted = MemoryChestModel.delete().where(MemoryChestModel.title == selected_title).execute()
|
||||
if deleted > 0:
|
||||
deleted_count += deleted
|
||||
logger.debug(f"[记忆管理] 删除选中记忆: {selected_title}")
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 删除选中记忆时出错: {e}")
|
||||
|
||||
# 删除相关记忆(通过内容匹配)
|
||||
for content in related_contents:
|
||||
try:
|
||||
|
|
|
|||
|
|
@ -0,0 +1,156 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
记忆系统工具函数
|
||||
包含模糊查找、相似度计算等工具函数
|
||||
"""
|
||||
import re
|
||||
from difflib import SequenceMatcher
|
||||
from typing import List, Tuple, Optional
|
||||
|
||||
from src.common.database.database_model import MemoryChest as MemoryChestModel
|
||||
from src.common.logger import get_logger
|
||||
|
||||
logger = get_logger("memory_utils")
|
||||
|
||||
|
||||
def calculate_similarity(text1: str, text2: str) -> float:
|
||||
"""
|
||||
计算两个文本的相似度
|
||||
|
||||
Args:
|
||||
text1: 第一个文本
|
||||
text2: 第二个文本
|
||||
|
||||
Returns:
|
||||
float: 相似度分数 (0-1)
|
||||
"""
|
||||
try:
|
||||
# 预处理文本
|
||||
text1 = preprocess_text(text1)
|
||||
text2 = preprocess_text(text2)
|
||||
|
||||
# 使用SequenceMatcher计算相似度
|
||||
similarity = SequenceMatcher(None, text1, text2).ratio()
|
||||
|
||||
# 如果其中一个文本包含另一个,提高相似度
|
||||
if text1 in text2 or text2 in text1:
|
||||
similarity = max(similarity, 0.8)
|
||||
|
||||
return similarity
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"计算相似度时出错: {e}")
|
||||
return 0.0
|
||||
|
||||
|
||||
def preprocess_text(text: str) -> str:
|
||||
"""
|
||||
预处理文本,提高匹配准确性
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
str: 预处理后的文本
|
||||
"""
|
||||
try:
|
||||
# 转换为小写
|
||||
text = text.lower()
|
||||
|
||||
# 移除标点符号和特殊字符
|
||||
text = re.sub(r'[^\w\s]', '', text)
|
||||
|
||||
# 移除多余空格
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"预处理文本时出错: {e}")
|
||||
return text
|
||||
|
||||
|
||||
def fuzzy_find_memory_by_title(target_title: str, similarity_threshold: float = 0.9) -> List[Tuple[str, str, float]]:
|
||||
"""
|
||||
根据标题模糊查找记忆
|
||||
|
||||
Args:
|
||||
target_title: 目标标题
|
||||
similarity_threshold: 相似度阈值,默认0.9
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, float]]: 匹配的记忆列表,每个元素为(title, content, similarity_score)
|
||||
"""
|
||||
try:
|
||||
# 获取所有记忆
|
||||
all_memories = MemoryChestModel.select()
|
||||
|
||||
matches = []
|
||||
for memory in all_memories:
|
||||
similarity = calculate_similarity(target_title, memory.title)
|
||||
if similarity >= similarity_threshold:
|
||||
matches.append((memory.title, memory.content, similarity))
|
||||
|
||||
# 按相似度降序排序
|
||||
matches.sort(key=lambda x: x[2], reverse=True)
|
||||
|
||||
logger.info(f"模糊查找标题 '{target_title}' 找到 {len(matches)} 个匹配项")
|
||||
return matches
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"模糊查找记忆时出错: {e}")
|
||||
return []
|
||||
|
||||
|
||||
def find_best_matching_memory(target_title: str, similarity_threshold: float = 0.9) -> Optional[Tuple[str, str, float]]:
|
||||
"""
|
||||
查找最佳匹配的记忆
|
||||
|
||||
Args:
|
||||
target_title: 目标标题
|
||||
similarity_threshold: 相似度阈值
|
||||
|
||||
Returns:
|
||||
Optional[Tuple[str, str, float]]: 最佳匹配的记忆(title, content, similarity)或None
|
||||
"""
|
||||
try:
|
||||
matches = fuzzy_find_memory_by_title(target_title, similarity_threshold)
|
||||
|
||||
if matches:
|
||||
best_match = matches[0] # 已经按相似度排序,第一个是最佳匹配
|
||||
logger.info(f"找到最佳匹配: '{best_match[0]}' (相似度: {best_match[2]:.3f})")
|
||||
return best_match
|
||||
else:
|
||||
logger.info(f"未找到相似度 >= {similarity_threshold} 的记忆")
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"查找最佳匹配记忆时出错: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def check_title_exists_fuzzy(target_title: str, similarity_threshold: float = 0.9) -> bool:
|
||||
"""
|
||||
检查标题是否已存在(模糊匹配)
|
||||
|
||||
Args:
|
||||
target_title: 目标标题
|
||||
similarity_threshold: 相似度阈值,默认0.9(较高阈值避免误判)
|
||||
|
||||
Returns:
|
||||
bool: 是否存在相似标题
|
||||
"""
|
||||
try:
|
||||
matches = fuzzy_find_memory_by_title(target_title, similarity_threshold)
|
||||
exists = len(matches) > 0
|
||||
|
||||
if exists:
|
||||
logger.info(f"发现相似标题: '{matches[0][0]}' (相似度: {matches[0][2]:.3f})")
|
||||
else:
|
||||
logger.debug("未发现相似标题")
|
||||
|
||||
return exists
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"检查标题是否存在时出错: {e}")
|
||||
return False
|
||||
|
|
@ -355,7 +355,7 @@ class DefaultReplyer:
|
|||
content = tool_result.get("content", "")
|
||||
result_type = tool_result.get("type", "tool_result")
|
||||
|
||||
tool_info_str += f"- 【{tool_name}】{result_type}: {content}\n"
|
||||
tool_info_str += f"- 【{tool_name}】: {content}\n"
|
||||
|
||||
tool_info_str += "以上是你获取到的实时信息,请在回复时参考这些信息。"
|
||||
logger.info(f"获取到 {len(tool_results)} 个工具结果")
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ class GetMemoryTool(BaseTool):
|
|||
|
||||
answer = await global_memory_chest.get_answer_by_question(question=question)
|
||||
if not answer:
|
||||
return {"content": f"没有找到相关记忆"}
|
||||
return {"content": f"问题:{question},没有找到相关记忆"}
|
||||
|
||||
return {"content": f"问题:{question},答案:{answer}"}
|
||||
|
||||
|
|
@ -80,7 +80,7 @@ class GetMemoryAction(BaseAction):
|
|||
action_done=True,
|
||||
)
|
||||
|
||||
return False, f"没有找到相关记忆"
|
||||
return False, f"问题:{question},没有找到相关记忆"
|
||||
|
||||
await self.store_action_info(
|
||||
action_build_into_prompt=True,
|
||||
|
|
|
|||
Loading…
Reference in New Issue