feat:记忆遗忘,优化记忆提取

pull/1359/head
SengokuCola 2025-11-12 01:29:11 +08:00
parent 2d6eba7da1
commit 012e0460e5
14 changed files with 464 additions and 1359 deletions

View File

@ -21,7 +21,6 @@ from src.person_info.person_info import Person
from src.plugin_system.base.component_types import EventType, ActionInfo
from src.plugin_system.core import events_manager
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
from src.memory_system.Memory_chest import global_memory_chest
from src.chat.utils.chat_message_builder import (
build_readable_messages_with_id,
get_raw_msg_before_timestamp_with_chat,

View File

@ -63,14 +63,14 @@ class FrequencyControl:
)
if time.time() - self.last_frequency_adjust_time < 120 or len(msg_list) <= 5:
if time.time() - self.last_frequency_adjust_time < 160 or len(msg_list) <= 20:
return
else:
new_msg_list = get_raw_msg_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=self.last_frequency_adjust_time,
timestamp_end=time.time(),
limit=5,
limit=20,
limit_mode="latest",
)

View File

@ -19,15 +19,12 @@ from src.chat.planner_actions.action_manager import ActionManager
from src.chat.heart_flow.hfc_utils import CycleDetail
from src.express.expression_learner import expression_learner_manager
from src.chat.frequency_control.frequency_control import frequency_control_manager
from src.memory_system.question_maker import QuestionMaker
from src.memory_system.questions import global_conflict_tracker
from src.memory_system.curious import check_and_make_question
from src.jargon import extract_and_store_jargon
from src.person_info.person_info import Person
from src.plugin_system.base.component_types import EventType, ActionInfo
from src.plugin_system.core import events_manager
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
from src.memory_system.Memory_chest import global_memory_chest
from src.chat.utils.chat_message_builder import (
build_readable_messages_with_id,
get_raw_msg_before_timestamp_with_chat,

View File

@ -6,8 +6,6 @@ import re
from typing import List, Optional, Dict, Any, Tuple
from datetime import datetime
from src.memory_system.Memory_chest import global_memory_chest
from src.memory_system.questions import global_conflict_tracker
from src.common.logger import get_logger
from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.info_data_model import ActionPlannerInfo

View File

@ -0,0 +1,376 @@
"""
记忆遗忘任务
每5分钟进行一次遗忘检查根据不同的遗忘阶段删除记忆
"""
import time
import random
from typing import List
from src.common.logger import get_logger
from src.common.database.database_model import ChatHistory
from src.manager.async_task_manager import AsyncTask
logger = get_logger("memory_forget_task")
class MemoryForgetTask(AsyncTask):
"""记忆遗忘任务每5分钟执行一次"""
def __init__(self):
# 每5分钟执行一次300秒
super().__init__(task_name="Memory Forget Task", wait_before_start=0, run_interval=300)
async def run(self):
"""执行遗忘检查"""
try:
current_time = time.time()
logger.info("[记忆遗忘] 开始遗忘检查...")
# 执行4个阶段的遗忘检查
await self._forget_stage_1(current_time)
await self._forget_stage_2(current_time)
await self._forget_stage_3(current_time)
await self._forget_stage_4(current_time)
logger.info("[记忆遗忘] 遗忘检查完成")
except Exception as e:
logger.error(f"[记忆遗忘] 执行遗忘检查时出错: {e}", exc_info=True)
async def _forget_stage_1(self, current_time: float):
"""
第一次遗忘检查
搜集所有记忆还未被遗忘检查过forget_times=0且已经是30分钟之外的记忆
取count最高25%和最低25%删除然后标记被遗忘检查次数为1
"""
try:
# 30分钟 = 1800秒
time_threshold = current_time - 1800
# 查询符合条件的记忆forget_times=0 且 end_time < time_threshold
candidates = list(
ChatHistory.select()
.where(
(ChatHistory.forget_times == 0) &
(ChatHistory.end_time < time_threshold)
)
)
if not candidates:
logger.debug("[记忆遗忘-阶段1] 没有符合条件的记忆")
return
logger.info(f"[记忆遗忘-阶段1] 找到 {len(candidates)} 条符合条件的记忆")
# 按count排序
candidates.sort(key=lambda x: x.count, reverse=True)
# 计算要删除的数量最高25%和最低25%
total_count = len(candidates)
delete_count = int(total_count * 0.25) # 25%
if delete_count == 0:
logger.debug("[记忆遗忘-阶段1] 删除数量为0跳过")
return
# 选择要删除的记录处理count相同的情况随机选择
to_delete = []
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "high"))
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "low"))
# 去重避免重复删除使用id去重
seen_ids = set()
unique_to_delete = []
for record in to_delete:
if record.id not in seen_ids:
seen_ids.add(record.id)
unique_to_delete.append(record)
to_delete = unique_to_delete
# 删除记录并更新forget_times
deleted_count = 0
for record in to_delete:
try:
record.delete_instance()
deleted_count += 1
except Exception as e:
logger.error(f"[记忆遗忘-阶段1] 删除记录失败: {e}")
# 更新剩余记录的forget_times为1
to_delete_ids = {r.id for r in to_delete}
remaining = [r for r in candidates if r.id not in to_delete_ids]
if remaining:
# 批量更新
ids_to_update = [r.id for r in remaining]
ChatHistory.update(forget_times=1).where(
ChatHistory.id.in_(ids_to_update)
).execute()
logger.info(f"[记忆遗忘-阶段1] 完成:删除了 {deleted_count} 条记忆,更新了 {len(remaining)} 条记忆的forget_times为1")
except Exception as e:
logger.error(f"[记忆遗忘-阶段1] 执行失败: {e}", exc_info=True)
async def _forget_stage_2(self, current_time: float):
"""
第二次遗忘检查
搜集所有记忆遗忘检查为1且已经是8小时之外的记忆
取count最高7%和最低7%删除然后标记被遗忘检查次数为2
"""
try:
# 8小时 = 28800秒
time_threshold = current_time - 28800
# 查询符合条件的记忆forget_times=1 且 end_time < time_threshold
candidates = list(
ChatHistory.select()
.where(
(ChatHistory.forget_times == 1) &
(ChatHistory.end_time < time_threshold)
)
)
if not candidates:
logger.debug("[记忆遗忘-阶段2] 没有符合条件的记忆")
return
logger.info(f"[记忆遗忘-阶段2] 找到 {len(candidates)} 条符合条件的记忆")
# 按count排序
candidates.sort(key=lambda x: x.count, reverse=True)
# 计算要删除的数量最高7%和最低7%
total_count = len(candidates)
delete_count = int(total_count * 0.07) # 7%
if delete_count == 0:
logger.debug("[记忆遗忘-阶段2] 删除数量为0跳过")
return
# 选择要删除的记录
to_delete = []
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "high"))
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "low"))
# 去重
to_delete = list(set(to_delete))
# 删除记录
deleted_count = 0
for record in to_delete:
try:
record.delete_instance()
deleted_count += 1
except Exception as e:
logger.error(f"[记忆遗忘-阶段2] 删除记录失败: {e}")
# 更新剩余记录的forget_times为2
to_delete_ids = {r.id for r in to_delete}
remaining = [r for r in candidates if r.id not in to_delete_ids]
if remaining:
ids_to_update = [r.id for r in remaining]
ChatHistory.update(forget_times=2).where(
ChatHistory.id.in_(ids_to_update)
).execute()
logger.info(f"[记忆遗忘-阶段2] 完成:删除了 {deleted_count} 条记忆,更新了 {len(remaining)} 条记忆的forget_times为2")
except Exception as e:
logger.error(f"[记忆遗忘-阶段2] 执行失败: {e}", exc_info=True)
async def _forget_stage_3(self, current_time: float):
"""
第三次遗忘检查
搜集所有记忆遗忘检查为2且已经是48小时之外的记忆
取count最高5%和最低5%删除然后标记被遗忘检查次数为3
"""
try:
# 48小时 = 172800秒
time_threshold = current_time - 172800
# 查询符合条件的记忆forget_times=2 且 end_time < time_threshold
candidates = list(
ChatHistory.select()
.where(
(ChatHistory.forget_times == 2) &
(ChatHistory.end_time < time_threshold)
)
)
if not candidates:
logger.debug("[记忆遗忘-阶段3] 没有符合条件的记忆")
return
logger.info(f"[记忆遗忘-阶段3] 找到 {len(candidates)} 条符合条件的记忆")
# 按count排序
candidates.sort(key=lambda x: x.count, reverse=True)
# 计算要删除的数量最高5%和最低5%
total_count = len(candidates)
delete_count = int(total_count * 0.05) # 5%
if delete_count == 0:
logger.debug("[记忆遗忘-阶段3] 删除数量为0跳过")
return
# 选择要删除的记录
to_delete = []
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "high"))
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "low"))
# 去重
to_delete = list(set(to_delete))
# 删除记录
deleted_count = 0
for record in to_delete:
try:
record.delete_instance()
deleted_count += 1
except Exception as e:
logger.error(f"[记忆遗忘-阶段3] 删除记录失败: {e}")
# 更新剩余记录的forget_times为3
to_delete_ids = {r.id for r in to_delete}
remaining = [r for r in candidates if r.id not in to_delete_ids]
if remaining:
ids_to_update = [r.id for r in remaining]
ChatHistory.update(forget_times=3).where(
ChatHistory.id.in_(ids_to_update)
).execute()
logger.info(f"[记忆遗忘-阶段3] 完成:删除了 {deleted_count} 条记忆,更新了 {len(remaining)} 条记忆的forget_times为3")
except Exception as e:
logger.error(f"[记忆遗忘-阶段3] 执行失败: {e}", exc_info=True)
async def _forget_stage_4(self, current_time: float):
"""
第四次遗忘检查
搜集所有记忆遗忘检查为3且已经是7天之外的记忆
取count最高2%和最低2%删除然后标记被遗忘检查次数为4
"""
try:
# 7天 = 604800秒
time_threshold = current_time - 604800
# 查询符合条件的记忆forget_times=3 且 end_time < time_threshold
candidates = list(
ChatHistory.select()
.where(
(ChatHistory.forget_times == 3) &
(ChatHistory.end_time < time_threshold)
)
)
if not candidates:
logger.debug("[记忆遗忘-阶段4] 没有符合条件的记忆")
return
logger.info(f"[记忆遗忘-阶段4] 找到 {len(candidates)} 条符合条件的记忆")
# 按count排序
candidates.sort(key=lambda x: x.count, reverse=True)
# 计算要删除的数量最高2%和最低2%
total_count = len(candidates)
delete_count = int(total_count * 0.02) # 2%
if delete_count == 0:
logger.debug("[记忆遗忘-阶段4] 删除数量为0跳过")
return
# 选择要删除的记录
to_delete = []
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "high"))
to_delete.extend(self._handle_same_count_random(candidates, delete_count, "low"))
# 去重
to_delete = list(set(to_delete))
# 删除记录
deleted_count = 0
for record in to_delete:
try:
record.delete_instance()
deleted_count += 1
except Exception as e:
logger.error(f"[记忆遗忘-阶段4] 删除记录失败: {e}")
# 更新剩余记录的forget_times为4
to_delete_ids = {r.id for r in to_delete}
remaining = [r for r in candidates if r.id not in to_delete_ids]
if remaining:
ids_to_update = [r.id for r in remaining]
ChatHistory.update(forget_times=4).where(
ChatHistory.id.in_(ids_to_update)
).execute()
logger.info(f"[记忆遗忘-阶段4] 完成:删除了 {deleted_count} 条记忆,更新了 {len(remaining)} 条记忆的forget_times为4")
except Exception as e:
logger.error(f"[记忆遗忘-阶段4] 执行失败: {e}", exc_info=True)
def _handle_same_count_random(self, candidates: List[ChatHistory], delete_count: int, mode: str) -> List[ChatHistory]:
"""
处理count相同的情况随机选择要删除的记录
Args:
candidates: 候选记录列表已按count排序
delete_count: 要删除的数量
mode: "high" 表示选择最高count的记录"low" 表示选择最低count的记录
Returns:
要删除的记录列表
"""
if not candidates or delete_count == 0:
return []
to_delete = []
if mode == "high":
# 从最高count开始选择
start_idx = 0
while start_idx < len(candidates) and len(to_delete) < delete_count:
# 找到所有count相同的记录
current_count = candidates[start_idx].count
same_count_records = []
idx = start_idx
while idx < len(candidates) and candidates[idx].count == current_count:
same_count_records.append(candidates[idx])
idx += 1
# 如果相同count的记录数量 <= 还需要删除的数量,全部选择
needed = delete_count - len(to_delete)
if len(same_count_records) <= needed:
to_delete.extend(same_count_records)
else:
# 随机选择需要的数量
to_delete.extend(random.sample(same_count_records, needed))
start_idx = idx
else: # mode == "low"
# 从最低count开始选择
start_idx = len(candidates) - 1
while start_idx >= 0 and len(to_delete) < delete_count:
# 找到所有count相同的记录
current_count = candidates[start_idx].count
same_count_records = []
idx = start_idx
while idx >= 0 and candidates[idx].count == current_count:
same_count_records.append(candidates[idx])
idx -= 1
# 如果相同count的记录数量 <= 还需要删除的数量,全部选择
needed = delete_count - len(to_delete)
if len(same_count_records) <= needed:
to_delete.extend(same_count_records)
else:
# 随机选择需要的数量
to_delete.extend(random.sample(same_count_records, needed))
start_idx = idx
return to_delete

View File

@ -317,35 +317,6 @@ class Expression(BaseModel):
class Meta:
table_name = "expression"
class MemoryChest(BaseModel):
"""
用于存储记忆仓库的模型
"""
title = TextField() # 标题
content = TextField() # 内容
chat_id = TextField(null=True) # 聊天ID
locked = BooleanField(default=False) # 是否锁定
class Meta:
table_name = "memory_chest"
class MemoryConflict(BaseModel):
"""
用于存储记忆整合过程中冲突内容的模型
"""
conflict_content = TextField() # 冲突内容
answer = TextField(null=True) # 回答内容
create_time = FloatField() # 创建时间
update_time = FloatField() # 更新时间
context = TextField(null=True) # 上下文
chat_id = TextField(null=True) # 聊天ID
raise_time = FloatField(null=True) # 触发次数
class Meta:
table_name = "memory_conflicts"
class Jargon(BaseModel):
"""
用于存储俚语的模型
@ -378,6 +349,7 @@ class ChatHistory(BaseModel):
keywords = TextField() # 关键词这段对话的关键词JSON格式存储
summary = TextField() # 概括:对这段话的平文本概括
count = IntegerField(default=0) # 被检索次数
forget_times = IntegerField(default=0) # 被遗忘检查的次数
class Meta:
table_name = "chat_history"
@ -410,8 +382,6 @@ MODELS = [
PersonInfo,
Expression,
ActionRecords,
MemoryChest,
MemoryConflict,
Jargon,
ChatHistory,
ThinkingBack,

View File

@ -70,6 +70,10 @@ class MainSystem:
# 添加遥测心跳任务
await async_task_manager.add_task(TelemetryHeartBeatTask())
# 添加记忆遗忘任务
from src.chat.utils.memory_forget_task import MemoryForgetTask
await async_task_manager.add_task(MemoryForgetTask())
# 启动API服务器
# start_api_server()

View File

@ -1,666 +0,0 @@
import asyncio
import json
import re
import time
import random
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
from src.common.database.database_model import MemoryChest as MemoryChestModel
from src.common.logger import get_logger
from src.config.config import global_config
from src.plugin_system.apis.message_api import build_readable_messages
from src.plugin_system.apis.message_api import get_raw_msg_by_timestamp_with_chat
from json_repair import repair_json
from src.memory_system.questions import global_conflict_tracker
from .memory_utils import (
find_best_matching_memory,
check_title_exists_fuzzy,
get_all_titles,
find_most_similar_memory_by_chat_id,
compute_merge_similarity_threshold
)
logger = get_logger("memory")
class MemoryChest:
def __init__(self):
self.LLMRequest = LLMRequest(
model_set=model_config.model_task_config.utils_small,
request_type="memory_chest",
)
self.LLMRequest_build = LLMRequest(
model_set=model_config.model_task_config.utils,
request_type="memory_chest_build",
)
self.running_content_list = {} # {chat_id: {"content": running_content, "last_update_time": timestamp, "create_time": timestamp}}
self.fetched_memory_list = [] # [(chat_id, (question, answer, timestamp)), ...]
def remove_one_memory_by_age_weight(self) -> bool:
"""
删除一条记忆越老/越新更易被删的权重随机选择=较小id=较大id
返回是否删除成功
"""
try:
memories = list(MemoryChestModel.select())
if not memories:
return False
# 排除锁定项
candidates = [m for m in memories if not getattr(m, "locked", False)]
if not candidates:
return False
# 按 id 排序,使用 id 近似时间顺序(小 -> 老,大 -> 新)
candidates.sort(key=lambda m: m.id)
n = len(candidates)
if n == 1:
MemoryChestModel.delete().where(MemoryChestModel.id == candidates[0].id).execute()
logger.info(f"[记忆管理] 已删除一条记忆(权重抽样){candidates[0].title}")
return True
# 计算U型权重中间最低两端最高
# r ∈ [0,1] 为位置归一化w = 0.1 + 0.9 * (abs(r-0.5)*2)**1.5
weights = []
for idx, _m in enumerate(candidates):
r = idx / (n - 1)
w = 0.1 + 0.9 * (abs(r - 0.5) * 2) ** 1.5
weights.append(w)
import random as _random
selected = _random.choices(candidates, weights=weights, k=1)[0]
MemoryChestModel.delete().where(MemoryChestModel.id == selected.id).execute()
logger.info(f"[记忆管理] 已删除一条记忆(权重抽样){selected.title}")
return True
except Exception as e:
logger.error(f"[记忆管理] 按年龄权重删除记忆时出错: {e}")
return False
async def get_answer_by_question(self, chat_id: str = "", question: str = "") -> str:
"""
根据问题获取答案
"""
logger.info(f"正在回忆问题答案: {question}")
title = await self.select_title_by_question(question)
if not title:
return ""
for memory in MemoryChestModel.select():
if memory.title == title:
content = memory.content
if random.random() < 0.5:
type = "要求原文能够较为全面的回答问题"
else:
type = "要求提取简短的内容"
prompt = f"""
目标文段
{content}
你现在需要从目标文段中找出合适的信息来回答问题{question}
请务必从目标文段中提取相关信息的**原文**并输出{type}
如果没有原文能够回答问题输出"无有效信息"即可不要输出其他内容
"""
if global_config.debug.show_prompt:
logger.info(f"记忆仓库获取答案 prompt: {prompt}")
else:
logger.debug(f"记忆仓库获取答案 prompt: {prompt}")
answer, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
if "无有效" in answer or "无有效信息" in answer or "无信息" in answer:
logger.info(f"没有能够回答{question}的记忆")
return ""
logger.info(f"记忆仓库对问题 “{question}” 获取答案: {answer}")
# 将问题和答案存到fetched_memory_list
if chat_id and answer:
self.fetched_memory_list.append((chat_id, (question, answer, time.time())))
# 清理fetched_memory_list
self._cleanup_fetched_memory_list()
return answer
def get_chat_memories_as_string(self, chat_id: str) -> str:
"""
获取某个chat_id的所有记忆并构建成字符串
Args:
chat_id: 聊天ID
Returns:
str: 格式化的记忆字符串格式问题xxx,答案:xxxxx\n问题xxx,答案:xxxxx\n...
"""
try:
memories = []
# 从fetched_memory_list中获取该chat_id的所有记忆
for cid, (question, answer, timestamp) in self.fetched_memory_list:
if cid == chat_id:
memories.append(f"问题:{question},答案:{answer}")
# 按时间戳排序(最新的在后面)
memories.sort()
# 用换行符连接所有记忆
result = "\n".join(memories)
# logger.info(f"chat_id {chat_id} 共有 {len(memories)} 条记忆")
return result
except Exception as e:
logger.error(f"获取chat_id {chat_id} 的记忆时出错: {e}")
return ""
async def select_title_by_question(self, question: str) -> str:
"""
根据消息内容选择最匹配的标题
Args:
question: 问题
Returns:
str: 选择的标题
"""
# 获取所有标题并构建格式化字符串(排除锁定的记忆)
titles = get_all_titles(exclude_locked=True)
formatted_titles = ""
for title in titles:
formatted_titles += f"{title}\n"
prompt = f"""
所有主题
{formatted_titles}
请根据以下问题选择一个能够回答问题的主题
问题{question}
请你输出主题不要输出其他内容完整输出主题名
"""
if global_config.debug.show_prompt:
logger.info(f"记忆仓库选择标题 prompt: {prompt}")
else:
logger.debug(f"记忆仓库选择标题 prompt: {prompt}")
title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
# 根据 title 获取 titles 里的对应项
selected_title = None
# 使用模糊查找匹配标题
best_match = find_best_matching_memory(title, similarity_threshold=0.8)
if best_match:
selected_title = best_match[0] # 获取匹配的标题
logger.info(f"记忆仓库选择标题: {selected_title} (相似度: {best_match[2]:.3f})")
else:
logger.warning(f"未找到相似度 >= 0.7 的标题匹配: {title}")
selected_title = None
return selected_title
def _cleanup_fetched_memory_list(self):
"""
清理fetched_memory_list移除超过10分钟的记忆和超过10条的最旧记忆
"""
try:
current_time = time.time()
ten_minutes_ago = current_time - 600 # 10分钟 = 600秒
# 移除超过10分钟的记忆
self.fetched_memory_list = [
(chat_id, (question, answer, timestamp))
for chat_id, (question, answer, timestamp) in self.fetched_memory_list
if timestamp > ten_minutes_ago
]
# 如果记忆条数超过10条移除最旧的5条
if len(self.fetched_memory_list) > 10:
# 按时间戳排序移除最旧的5条
self.fetched_memory_list.sort(key=lambda x: x[1][2]) # 按timestamp排序
self.fetched_memory_list = self.fetched_memory_list[5:] # 保留最新的5条
logger.debug(f"fetched_memory_list清理后当前有 {len(self.fetched_memory_list)} 条记忆")
except Exception as e:
logger.error(f"清理fetched_memory_list时出错: {e}")
async def _save_to_database_and_clear(self, chat_id: str, content: str):
"""
生成标题保存到数据库并清空对应chat_id的running_content
Args:
chat_id: 聊天ID
content: 要保存的内容
"""
try:
# 生成标题
title = ""
title_prompt = f"""
请为以下内容生成一个描述全面的标题要求描述内容的主要概念和事件
{content}
标题不要分点不要换行不要输出其他内容
请只输出标题不要输出其他内容
"""
if global_config.debug.show_prompt:
logger.info(f"记忆仓库生成标题 prompt: {title_prompt}")
else:
logger.debug(f"记忆仓库生成标题 prompt: {title_prompt}")
title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_build.generate_response_async(title_prompt)
await asyncio.sleep(0.5)
if title:
# 保存到数据库
MemoryChestModel.create(
title=title.strip(),
content=content,
chat_id=chat_id
)
logger.info(f"已保存记忆仓库内容,标题: {title.strip()}, chat_id: {chat_id}")
# 清空内容并刷新时间戳,但保留条目用于增量计算
if chat_id in self.running_content_list:
current_time = time.time()
self.running_content_list[chat_id] = {
"content": "",
"last_update_time": current_time,
"create_time": current_time
}
logger.info(f"已保存并刷新chat_id {chat_id} 的时间戳,准备下一次增量构建")
else:
logger.warning(f"生成标题失败chat_id: {chat_id}")
except Exception as e:
logger.error(f"保存记忆仓库内容时出错: {e}")
async def choose_merge_target(self, memory_title: str, chat_id: str = None) -> tuple[list[str], list[str]]:
"""
选择与给定记忆标题相关的记忆目标基于文本相似度
Args:
memory_title: 要匹配的记忆标题
chat_id: 聊天ID用于筛选同chat_id的记忆
Returns:
tuple[list[str], list[str]]: (选中的记忆标题列表, 选中的记忆内容列表)
"""
try:
if not chat_id:
logger.warning("未提供chat_id无法进行记忆匹配")
return [], []
# 动态计算相似度阈值(占比越高阈值越低)
dynamic_threshold = compute_merge_similarity_threshold()
# 使用相似度匹配查找最相似的记忆(基于动态阈值)
similar_memory = find_most_similar_memory_by_chat_id(
target_title=memory_title,
target_chat_id=chat_id,
similarity_threshold=dynamic_threshold
)
if similar_memory:
selected_title, selected_content, similarity = similar_memory
logger.info(f"'{memory_title}' 找到相似记忆: '{selected_title}' (相似度: {similarity:.3f} 阈值: {dynamic_threshold:.2f})")
return [selected_title], [selected_content]
else:
logger.info(f"'{memory_title}' 未找到相似度 >= {dynamic_threshold:.2f} 的记忆")
return [], []
except Exception as e:
logger.error(f"选择合并目标时出错: {e}")
return [], []
def _get_memories_by_titles(self, titles: list[str]) -> list[str]:
"""
根据标题列表查找对应的记忆内容
Args:
titles: 记忆标题列表
Returns:
list[str]: 记忆内容列表
"""
try:
contents = []
for title in titles:
if not title or not title.strip():
continue
# 使用模糊查找匹配记忆
try:
best_match = find_best_matching_memory(title.strip(), similarity_threshold=0.8)
if best_match:
# 检查记忆是否被锁定
memory_title = best_match[0]
memory_content = best_match[1]
# 查询数据库中的锁定状态
for memory in MemoryChestModel.select():
if memory.title == memory_title and memory.locked:
logger.warning(f"记忆 '{memory_title}' 已锁定,跳过合并")
continue
contents.append(memory_content)
logger.debug(f"找到记忆: {memory_title} (相似度: {best_match[2]:.3f})")
else:
logger.warning(f"未找到相似度 >= 0.8 的标题匹配: '{title}'")
except Exception as e:
logger.error(f"查找标题 '{title}' 的记忆时出错: {e}")
continue
# logger.info(f"成功找到 {len(contents)} 条记忆内容")
return contents
except Exception as e:
logger.error(f"根据标题查找记忆时出错: {e}")
return []
def _parse_merged_parts(self, merged_response: str) -> tuple[str, str]:
"""
解析合并记忆的part1和part2内容
Args:
merged_response: LLM返回的合并记忆响应
Returns:
tuple[str, str]: (part1_content, part2_content)
"""
try:
# 使用正则表达式提取part1和part2内容
import re
# 提取part1内容
part1_pattern = r'<part1>(.*?)</part1>'
part1_match = re.search(part1_pattern, merged_response, re.DOTALL)
part1_content = part1_match.group(1).strip() if part1_match else ""
# 提取part2内容
part2_pattern = r'<part2>(.*?)</part2>'
part2_match = re.search(part2_pattern, merged_response, re.DOTALL)
part2_content = part2_match.group(1).strip() if part2_match else ""
# 检查是否包含none或None不区分大小写
def is_none_content(content: str) -> bool:
if not content:
return True
# 检查是否只包含"none"或"None"(不区分大小写)
return re.match(r'^\s*none\s*$', content, re.IGNORECASE) is not None
# 如果包含none则设置为空字符串
if is_none_content(part1_content):
part1_content = ""
logger.info("part1内容为none设置为空")
if is_none_content(part2_content):
part2_content = ""
logger.info("part2内容为none设置为空")
return part1_content, part2_content
except Exception as e:
logger.error(f"解析合并记忆part1/part2时出错: {e}")
return "", ""
def _parse_merge_target_json(self, json_text: str) -> list[str]:
"""
解析choose_merge_target生成的JSON响应
Args:
json_text: LLM返回的JSON文本
Returns:
list[str]: 解析出的记忆标题列表
"""
try:
# 清理JSON文本移除可能的额外内容
repaired_content = repair_json(json_text)
# 尝试直接解析JSON
try:
parsed_data = json.loads(repaired_content)
if isinstance(parsed_data, list):
# 如果是列表提取selected_title字段
titles = []
for item in parsed_data:
if isinstance(item, dict) and "selected_title" in item:
value = item.get("selected_title", "")
if isinstance(value, str) and value.strip():
titles.append(value)
return titles
elif isinstance(parsed_data, dict) and "selected_title" in parsed_data:
# 如果是单个对象
value = parsed_data.get("selected_title", "")
if isinstance(value, str) and value.strip():
return [value]
else:
# 空字符串表示没有相关记忆
return []
except json.JSONDecodeError:
pass
# 如果直接解析失败尝试提取JSON对象
# 查找所有包含selected_title的JSON对象
pattern = r'\{[^}]*"selected_title"[^}]*\}'
matches = re.findall(pattern, repaired_content)
titles = []
for match in matches:
try:
obj = json.loads(match)
if "selected_title" in obj:
value = obj.get("selected_title", "")
if isinstance(value, str) and value.strip():
titles.append(value)
except json.JSONDecodeError:
continue
if titles:
return titles
logger.warning(f"无法解析JSON响应: {json_text[:200]}...")
return []
except Exception as e:
logger.error(f"解析合并目标JSON时出错: {e}")
return []
async def merge_memory(self,memory_list: list[str], chat_id: str = None) -> tuple[str, str]:
"""
合并记忆
"""
try:
# 在记忆整合前先清理空chat_id的记忆
cleaned_count = self.cleanup_empty_chat_id_memories()
if cleaned_count > 0:
logger.info(f"记忆整合前清理了 {cleaned_count} 条空chat_id记忆")
content = ""
for memory in memory_list:
content += f"{memory}\n"
prompt = f"""
以下是多段记忆内容请将它们进行整合和修改
{content}
--------------------------------
请将上面的多段记忆内容合并成两部分内容第一部分是可以整合不冲突的概念和知识第二部分是相互有冲突的概念和知识
请主要关注概念和知识而不是聊天的琐事
重要你要关注的概念和知识必须是较为不常见的信息或者时效性较强的信息
不要关注常见的只是或者已经过时的信息
1.不要关注诸如某个用户做了什么说了什么不要关注某个用户的行为而是关注其中的概念性信息
2.概念要求精确不啰嗦像科普读物或教育课本那样
3.如果有图片请只关注图片和文本结合的知识和概念性内容
4.记忆为一段纯文本逻辑清晰指出概念的含义并说明关系
**第一部分**
1.如果两个概念在描述同一件事情且相互之间逻辑不冲突请你严格判断且相互之间没有矛盾请将它们整合成一个概念并输出到第一部分
2.如果某个概念在时间上更新了另一个概念请用新概念更新就概念来整合并输出到第一部分
3.如果没有可整合的概念请你输出none
**第二部分**
1.如果记忆中有无法整合的地方例如概念不一致有逻辑上的冲突请你输出到第二部分
2.如果两个概念在描述同一件事情但相互之间逻辑冲突请将它们输出到第二部分
3.如果没有无法整合的概念请你输出none
**输出格式要求**
请你按以下格式输出
<part1>
第一部分内容整合后的概念如果第一部分为none请输出none
</part1>
<part2>
第二部分内容无法整合冲突的概念如果第二部分为none请输出none
</part2>
不要输出其他内容现在请你输出,不要输出其他内容注意一定要直白白话口语化不要浮夸修辞
"""
if global_config.debug.show_prompt:
logger.info(f"合并记忆 prompt: {prompt}")
else:
logger.debug(f"合并记忆 prompt: {prompt}")
merged_memory, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_build.generate_response_async(prompt)
# 解析part1和part2
part1_content, part2_content = self._parse_merged_parts(merged_memory)
# 处理part2独立记录冲突内容无论part1是否为空
if part2_content and part2_content.strip() != "none":
logger.info(f"合并记忆part2记录冲突内容: {len(part2_content)} 字符")
# 记录冲突到数据库
await global_conflict_tracker.record_memory_merge_conflict(part2_content,chat_id)
# 处理part1生成标题并保存
if part1_content and part1_content.strip() != "none":
merged_title = await self._generate_title_for_merged_memory(part1_content)
# 保存part1到数据库
MemoryChestModel.create(
title=merged_title,
content=part1_content,
chat_id=chat_id
)
logger.info(f"合并记忆part1已保存: {merged_title}")
return merged_title, part1_content
else:
logger.warning("合并记忆part1为空跳过保存")
return "", ""
except Exception as e:
logger.error(f"合并记忆时出错: {e}")
return "", ""
async def _generate_title_for_merged_memory(self, merged_content: str) -> str:
"""
为合并后的记忆生成标题
Args:
merged_content: 合并后的记忆内容
Returns:
str: 生成的标题
"""
try:
prompt = f"""
请为以下内容生成一个描述全面的标题要求描述内容的主要概念和事件
例如
<example>
标题达尔文的自然选择理论
内容达尔文的自然选择是生物进化理论的重要组成部分它解释了生物进化过程中的自然选择机制
</example>
<example>
标题麦麦的禁言插件和支持版本
内容
麦麦的禁言插件是一款能够实现禁言的插件
麦麦的禁言插件可能不支持0.10.2
MutePlugin 是禁言插件的名称
</example>
需要对以下内容生成标题
{merged_content}
标题不要分点不要换行不要输出其他内容不要浮夸以白话简洁的风格输出标题
请只输出标题不要输出其他内容
"""
if global_config.debug.show_prompt:
logger.info(f"生成合并记忆标题 prompt: {prompt}")
else:
logger.debug(f"生成合并记忆标题 prompt: {prompt}")
title_response, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
# 清理标题,移除可能的引号或多余字符
title = title_response.strip().strip('"').strip("'").strip()
if title:
# 检查是否存在相似标题
if check_title_exists_fuzzy(title, similarity_threshold=0.9):
logger.warning(f"生成的标题 '{title}' 与现有标题相似,使用时间戳后缀")
title = f"{title}_{int(time.time())}"
logger.info(f"生成合并记忆标题: {title}")
return title
else:
logger.warning("生成合并记忆标题失败,使用默认标题")
return f"合并记忆_{int(time.time())}"
except Exception as e:
logger.error(f"生成合并记忆标题时出错: {e}")
return f"合并记忆_{int(time.time())}"
def cleanup_empty_chat_id_memories(self) -> int:
"""
清理chat_id为空的记忆记录
Returns:
int: 被清理的记忆数量
"""
try:
# 查找所有chat_id为空的记忆
empty_chat_id_memories = MemoryChestModel.select().where(
(MemoryChestModel.chat_id.is_null()) |
(MemoryChestModel.chat_id == "") |
(MemoryChestModel.chat_id == "None")
)
count = 0
for memory in empty_chat_id_memories:
logger.info(f"清理空chat_id记忆: 标题='{memory.title}', ID={memory.id}")
memory.delete_instance()
count += 1
if count > 0:
logger.info(f"已清理 {count} 条chat_id为空的记忆记录")
else:
logger.debug("未发现需要清理的空chat_id记忆记录")
return count
except Exception as e:
logger.error(f"清理空chat_id记忆时出错: {e}")
return 0
global_memory_chest = MemoryChest()

View File

@ -7,7 +7,6 @@ from src.chat.utils.chat_message_builder import (
)
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config, global_config
from src.memory_system.questions import global_conflict_tracker
from src.memory_system.memory_utils import parse_md_json
logger = get_logger("curious")
@ -137,7 +136,7 @@ class CuriousDetector:
async def make_question_from_detection(self, question: str, context: str = "") -> bool:
"""
将检测到的问题记录到冲突追踪器中
将检测到的问题记录已移除冲突追踪器功能
Args:
question: 检测到的问题
@ -150,14 +149,8 @@ class CuriousDetector:
if not question or not question.strip():
return False
# 记录问题到冲突追踪器
await global_conflict_tracker.record_conflict(
conflict_content=question.strip(),
context=context,
chat_id=self.chat_id
)
logger.info(f"已记录问题到冲突追踪器: {question}")
# 冲突追踪器功能已移除
logger.info(f"检测到问题(冲突追踪器已移除): {question}")
return True
except Exception as e:

View File

@ -67,7 +67,8 @@ def init_memory_retrieval_prompt():
# 第二步ReAct Agent prompt工具描述会在运行时动态生成
Prompt(
"""
你的名字是{bot_name}你正在参与聊天你需要搜集信息来回答问题帮助你参与聊天
你的名字是{bot_name}现在是{time_now}
你正在参与聊天你需要搜集信息来回答问题帮助你参与聊天
你需要通过思考(Think)行动(Action)观察(Observation)的循环来回答问题
当前问题{question}
@ -160,7 +161,7 @@ async def _react_agent_solve_question(
chat_id: str,
max_iterations: int = 5,
timeout: float = 30.0
) -> Tuple[bool, str, List[Dict[str, Any]]]:
) -> Tuple[bool, str, List[Dict[str, Any]], bool]:
"""使用ReAct架构的Agent来解决问题
Args:
@ -170,16 +171,18 @@ async def _react_agent_solve_question(
timeout: 超时时间
Returns:
Tuple[bool, str, List[Dict[str, Any]]]: (是否找到答案, 答案内容, 思考步骤列表)
Tuple[bool, str, List[Dict[str, Any]], bool]: (是否找到答案, 答案内容, 思考步骤列表, 是否超时)
"""
start_time = time.time()
collected_info = ""
thinking_steps = []
is_timeout = False
for iteration in range(max_iterations):
# 检查超时
if time.time() - start_time > timeout:
logger.warning(f"ReAct Agent超时已迭代{iteration}")
is_timeout = True
break
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代,问题: {question}")
@ -191,10 +194,14 @@ async def _react_agent_solve_question(
# 获取bot_name
bot_name = global_config.bot.nickname
# 获取当前时间
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 构建prompt动态生成工具描述
prompt = await global_prompt_manager.format_prompt(
"memory_retrieval_react_prompt",
bot_name=bot_name,
time_now=time_now,
question=question,
collected_info=collected_info if collected_info else "暂无信息",
tools_description=tool_registry.get_tools_description(),
@ -247,14 +254,14 @@ async def _react_agent_solve_question(
step["observations"] = ["找到答案"]
thinking_steps.append(step)
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 找到最终答案: {answer}")
return True, answer, thinking_steps
return True, answer, thinking_steps, False
elif action_type == "no_answer":
# Agent确认无法找到答案
answer = thought # 使用thought说明无法找到答案的原因
step["observations"] = ["确认无法找到答案"]
thinking_steps.append(step)
logger.info(f"ReAct Agent 第 {iteration + 1} 次迭代 确认无法找到答案: {answer}")
return False, answer, thinking_steps
return False, answer, thinking_steps, False
# 并行执行所有工具
tool_registry = get_tool_registry()
@ -316,8 +323,11 @@ async def _react_agent_solve_question(
# 只有Agent明确返回final_answer时才认为找到了答案
if collected_info:
logger.warning(f"ReAct Agent达到最大迭代次数或超时但未明确返回final_answer。已收集信息: {collected_info[:100]}...")
logger.warning("ReAct Agent达到最大迭代次数或超时直接视为no_answer")
return False, "未找到相关信息", thinking_steps
if is_timeout:
logger.warning("ReAct Agent超时直接视为no_answer")
else:
logger.warning("ReAct Agent达到最大迭代次数直接视为no_answer")
return False, "未找到相关信息", thinking_steps, is_timeout
def _get_recent_query_history(chat_id: str, time_window_seconds: float = 300.0) -> str:
@ -513,28 +523,10 @@ def _store_thinking_back(
logger.error(f"存储思考过程失败: {e}")
def _get_max_iterations_by_question_count(question_count: int) -> int:
"""根据问题数量获取最大迭代次数
Args:
question_count: 问题数量
Returns:
int: 最大迭代次数
"""
if question_count == 1:
return 6
elif question_count == 2:
return 3
else: # 3个或以上
return 2
async def _process_single_question(
question: str,
chat_id: str,
context: str,
max_iterations: int
context: str
) -> Optional[str]:
"""处理单个问题的查询(包含缓存检查逻辑)
@ -542,7 +534,6 @@ async def _process_single_question(
question: 要查询的问题
chat_id: 聊天ID
context: 上下文信息
max_iterations: 最大迭代次数
Returns:
Optional[str]: 如果找到答案返回格式化的结果字符串否则返回None
@ -584,22 +575,25 @@ async def _process_single_question(
else:
logger.info(f"未找到缓存答案使用ReAct Agent查询问题: {question[:50]}...")
found_answer, answer, thinking_steps = await _react_agent_solve_question(
found_answer, answer, thinking_steps, is_timeout = await _react_agent_solve_question(
question=question,
chat_id=chat_id,
max_iterations=max_iterations,
timeout=30.0
max_iterations=5,
timeout=120.0
)
# 存储到数据库
_store_thinking_back(
chat_id=chat_id,
question=question,
context=context,
found_answer=found_answer,
answer=answer,
thinking_steps=thinking_steps
)
# 存储到数据库(超时时不存储)
if not is_timeout:
_store_thinking_back(
chat_id=chat_id,
question=question,
context=context,
found_answer=found_answer,
answer=answer,
thinking_steps=thinking_steps
)
else:
logger.info(f"ReAct Agent超时不存储到数据库问题: {question[:50]}...")
if found_answer and answer:
return f"问题:{question}\n答案:{answer}"
@ -659,8 +653,6 @@ async def build_memory_retrieval_prompt(
logger.info(f"记忆检索问题生成提示词: {question_prompt}")
logger.info(f"记忆检索问题生成响应: {response}")
logger.info(f"记忆检索问题生成推理: {reasoning_content}")
logger.info(f"记忆检索问题生成模型: {model_name}")
if not success:
logger.error(f"LLM生成问题失败: {response}")
@ -679,23 +671,21 @@ async def build_memory_retrieval_prompt(
retrieved_memory = "\n\n".join(cached_memories)
end_time = time.time()
logger.info(f"无当次查询,返回缓存记忆,耗时: {(end_time - start_time):.3f}秒,包含 {len(cached_memories)} 条缓存记忆")
return f"你回忆起了以下信息:\n{retrieved_memory}\n请在回复时参考这些回忆的信息。\n"
return f"你回忆起了以下信息:\n{retrieved_memory}\n如果与回复内容相关,可以参考这些回忆的信息。\n"
else:
return ""
logger.info(f"解析到 {len(questions)} 个问题: {questions}")
# 第二步:根据问题数量确定最大迭代次数
max_iterations = _get_max_iterations_by_question_count(len(questions))
logger.info(f"问题数量: {len(questions)},设置最大迭代次数: {max_iterations}")
# 第二步并行处理所有问题固定使用5次迭代/120秒超时
logger.info(f"问题数量: {len(questions)},固定设置最大迭代次数: 5超时时间: 120秒")
# 并行处理所有问题
question_tasks = [
_process_single_question(
question=question,
chat_id=chat_id,
context=message,
max_iterations=max_iterations
context=message
)
for question in questions
]
@ -730,7 +720,7 @@ async def build_memory_retrieval_prompt(
if all_results:
retrieved_memory = "\n\n".join(all_results)
logger.info(f"记忆检索成功,耗时: {(end_time - start_time):.3f}秒,包含 {len(all_results)} 条记忆(含缓存)")
return f"你回忆起了以下信息:\n{retrieved_memory}\n请在回复时参考这些回忆的信息。\n"
return f"你回忆起了以下信息:\n{retrieved_memory}\n如果与回复内容相关,可以参考这些回忆的信息。\n"
else:
logger.debug("所有问题均未找到答案,且无缓存记忆")
return ""

View File

@ -6,40 +6,12 @@
import json
import re
from difflib import SequenceMatcher
from typing import List, Tuple, Optional
from src.common.database.database_model import MemoryChest as MemoryChestModel
from src.common.logger import get_logger
from json_repair import repair_json
from src.config.config import global_config
logger = get_logger("memory_utils")
def get_all_titles(exclude_locked: bool = False) -> list[str]:
"""
获取记忆仓库中的所有标题
Args:
exclude_locked: 是否排除锁定的记忆默认为 False
Returns:
list: 包含所有标题的列表
"""
try:
# 查询所有记忆记录的标题
titles = []
for memory in MemoryChestModel.select():
if memory.title:
# 如果 exclude_locked 为 True 且记忆已锁定,则跳过
if exclude_locked and memory.locked:
continue
titles.append(memory.title)
return titles
except Exception as e:
print(f"获取记忆标题时出错: {e}")
return []
def parse_md_json(json_text: str) -> list[str]:
"""从Markdown格式的内容中提取JSON对象和推理内容"""
json_objects = []
@ -134,259 +106,3 @@ def preprocess_text(text: str) -> str:
logger.error(f"预处理文本时出错: {e}")
return text
def fuzzy_find_memory_by_title(target_title: str, similarity_threshold: float = 0.9) -> List[Tuple[str, str, float]]:
"""
根据标题模糊查找记忆
Args:
target_title: 目标标题
similarity_threshold: 相似度阈值默认0.9
Returns:
List[Tuple[str, str, float]]: 匹配的记忆列表每个元素为(title, content, similarity_score)
"""
try:
# 获取所有记忆
all_memories = MemoryChestModel.select()
matches = []
for memory in all_memories:
similarity = calculate_similarity(target_title, memory.title)
if similarity >= similarity_threshold:
matches.append((memory.title, memory.content, similarity))
# 按相似度降序排序
matches.sort(key=lambda x: x[2], reverse=True)
# logger.info(f"模糊查找标题 '{target_title}' 找到 {len(matches)} 个匹配项")
return matches
except Exception as e:
logger.error(f"模糊查找记忆时出错: {e}")
return []
def find_best_matching_memory(target_title: str, similarity_threshold: float = 0.9) -> Optional[Tuple[str, str, float]]:
"""
查找最佳匹配的记忆
Args:
target_title: 目标标题
similarity_threshold: 相似度阈值
Returns:
Optional[Tuple[str, str, float]]: 最佳匹配的记忆(title, content, similarity)或None
"""
try:
matches = fuzzy_find_memory_by_title(target_title, similarity_threshold)
if matches:
best_match = matches[0] # 已经按相似度排序,第一个是最佳匹配
# logger.info(f"找到最佳匹配: '{best_match[0]}' (相似度: {best_match[2]:.3f})")
return best_match
else:
logger.info(f"未找到相似度 >= {similarity_threshold} 的记忆")
return None
except Exception as e:
logger.error(f"查找最佳匹配记忆时出错: {e}")
return None
def check_title_exists_fuzzy(target_title: str, similarity_threshold: float = 0.9) -> bool:
"""
检查标题是否已存在模糊匹配
Args:
target_title: 目标标题
similarity_threshold: 相似度阈值默认0.9较高阈值避免误判
Returns:
bool: 是否存在相似标题
"""
try:
matches = fuzzy_find_memory_by_title(target_title, similarity_threshold)
exists = len(matches) > 0
if exists:
logger.info(f"发现相似标题: '{matches[0][0]}' (相似度: {matches[0][2]:.3f})")
else:
logger.debug("未发现相似标题")
return exists
except Exception as e:
logger.error(f"检查标题是否存在时出错: {e}")
return False
def get_memories_by_chat_id_weighted(target_chat_id: str, same_chat_weight: float = 0.95, other_chat_weight: float = 0.05) -> List[Tuple[str, str, str]]:
"""
根据chat_id进行加权抽样获取记忆列表
Args:
target_chat_id: 目标聊天ID
same_chat_weight: 同chat_id记忆的权重默认0.9595%概率
other_chat_weight: 其他chat_id记忆的权重默认0.055%概率
Returns:
List[Tuple[str, str, str]]: 选中的记忆列表每个元素为(title, content, chat_id)
"""
try:
# 获取所有记忆
all_memories = MemoryChestModel.select()
# 按chat_id分组
same_chat_memories = []
other_chat_memories = []
for memory in all_memories:
if memory.title and not memory.locked: # 排除锁定的记忆
if memory.chat_id == target_chat_id:
same_chat_memories.append((memory.title, memory.content, memory.chat_id))
else:
other_chat_memories.append((memory.title, memory.content, memory.chat_id))
# 如果没有同chat_id的记忆返回空列表
if not same_chat_memories:
logger.warning(f"未找到chat_id为 '{target_chat_id}' 的记忆")
return []
# 计算抽样数量
total_same = len(same_chat_memories)
total_other = len(other_chat_memories)
# 根据权重计算抽样数量
if total_other > 0:
# 计算其他chat_id记忆的抽样数量至少1个最多不超过总数的10%
other_sample_count = max(1, min(total_other, int(total_same * other_chat_weight / same_chat_weight)))
else:
other_sample_count = 0
# 随机抽样
selected_memories = []
# 选择同chat_id的记忆全部选择因为权重很高
selected_memories.extend(same_chat_memories)
# 随机选择其他chat_id的记忆
if other_sample_count > 0 and total_other > 0:
import random
other_selected = random.sample(other_chat_memories, min(other_sample_count, total_other))
selected_memories.extend(other_selected)
logger.info(f"加权抽样结果: 同chat_id记忆 {len(same_chat_memories)}其他chat_id记忆 {min(other_sample_count, total_other)}")
return selected_memories
except Exception as e:
logger.error(f"按chat_id加权抽样记忆时出错: {e}")
return []
def get_memory_titles_by_chat_id_weighted(target_chat_id: str, same_chat_weight: float = 0.95, other_chat_weight: float = 0.05) -> List[str]:
"""
根据chat_id进行加权抽样获取记忆标题列表用于合并选择
Args:
target_chat_id: 目标聊天ID
same_chat_weight: 同chat_id记忆的权重默认0.9595%概率
other_chat_weight: 其他chat_id记忆的权重默认0.055%概率
Returns:
List[str]: 选中的记忆标题列表
"""
try:
memories = get_memories_by_chat_id_weighted(target_chat_id, same_chat_weight, other_chat_weight)
titles = [memory[0] for memory in memories] # 提取标题
return titles
except Exception as e:
logger.error(f"按chat_id加权抽样记忆标题时出错: {e}")
return []
def find_most_similar_memory_by_chat_id(target_title: str, target_chat_id: str, similarity_threshold: float = 0.5) -> Optional[Tuple[str, str, float]]:
"""
在指定chat_id的记忆中查找最相似的记忆
Args:
target_title: 目标标题
target_chat_id: 目标聊天ID
similarity_threshold: 相似度阈值默认0.7
Returns:
Optional[Tuple[str, str, float]]: 最相似的记忆(title, content, similarity)或None
"""
try:
# 获取指定chat_id的所有记忆
same_chat_memories = []
for memory in MemoryChestModel.select():
if memory.title and not memory.locked and memory.chat_id == target_chat_id:
same_chat_memories.append((memory.title, memory.content))
if not same_chat_memories:
logger.warning(f"未找到chat_id为 '{target_chat_id}' 的记忆")
return None
# 计算相似度并找到最佳匹配
best_match = None
best_similarity = 0.0
for title, content in same_chat_memories:
# 跳过目标标题本身
if title.strip() == target_title.strip():
continue
similarity = calculate_similarity(target_title, title)
if similarity > best_similarity:
best_similarity = similarity
best_match = (title, content, similarity)
# 检查是否超过阈值
if best_match and best_similarity >= similarity_threshold:
logger.info(f"找到最相似记忆: '{best_match[0]}' (相似度: {best_similarity:.3f})")
return best_match
else:
logger.info(f"未找到相似度 >= {similarity_threshold} 的记忆,最高相似度: {best_similarity:.3f}")
return None
except Exception as e:
logger.error(f"查找最相似记忆时出错: {e}")
return None
def compute_merge_similarity_threshold() -> float:
"""
根据当前记忆数量占比动态计算合并相似度阈值
规则占比越高阈值越低
- < 60%: 0.80更严格避免早期误合并
- < 80%: 0.70
- < 100%: 0.60
- < 120%: 0.50
- >= 120%: 0.45最宽松加速收敛
"""
try:
current_count = MemoryChestModel.select().count()
max_count = max(1, int(global_config.memory.max_memory_number))
percentage = current_count / max_count
if percentage < 0.6:
return 0.70
elif percentage < 0.8:
return 0.60
elif percentage < 1.0:
return 0.50
elif percentage < 1.5:
return 0.40
elif percentage < 2:
return 0.30
else:
return 0.25
except Exception:
# 发生异常时使用保守阈值
return 0.70

View File

@ -1,98 +0,0 @@
import time
import random
from typing import List, Optional, Tuple
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, build_readable_messages
from src.common.database.database_model import MemoryConflict
from src.config.config import global_config
class QuestionMaker:
def __init__(self, chat_id: str, context: str = "") -> None:
"""问题生成器。
- chat_id: 会话 ID用于筛选该会话下的冲突记录
- context: 额外上下文可用于后续扩展
用法示例
>>> qm = QuestionMaker(chat_id="some_chat")
>>> question, chat_ctx, conflict_ctx = await qm.make_question()
"""
self.chat_id = chat_id
self.context = context
def get_context(self, timestamp: float = time.time()) -> str:
"""获取指定时间点之前的对话上下文字符串。"""
latest_30_msgs = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id,
timestamp=timestamp,
limit=30,
)
all_dialogue_prompt_str = build_readable_messages(
latest_30_msgs,
replace_bot_name=True,
timestamp_mode="normal_no_YMD",
)
return all_dialogue_prompt_str
async def get_all_conflicts(self) -> List[MemoryConflict]:
"""获取当前会话下的所有记忆冲突记录。"""
conflicts: List[MemoryConflict] = list(MemoryConflict.select().where(MemoryConflict.chat_id == self.chat_id))
return conflicts
async def get_un_answered_conflict(self) -> List[MemoryConflict]:
"""获取未回答的记忆冲突记录answer 为空)。"""
conflicts = await self.get_all_conflicts()
return [conflict for conflict in conflicts if not conflict.answer]
async def get_random_unanswered_conflict(self) -> Optional[MemoryConflict]:
"""按权重随机选取一个未回答的冲突并自增 raise_time。
选择规则
- 若存在 `raise_time == 0` 的项按权重抽样0 次权重 1.01 次权重 0.01
- 若不存在返回 None
- 每次成功选中后将该条目的 `raise_time` 自增 1 并保存
"""
conflicts = await self.get_un_answered_conflict()
if not conflicts:
return None
conflicts_with_zero = [c for c in conflicts if (getattr(c, "raise_time", 0) or 0) == 0]
if conflicts_with_zero:
# 权重规则raise_time == 0 -> 1.0raise_time >= 1 -> 0.01
weights = []
for conflict in conflicts:
current_raise_time = getattr(conflict, "raise_time", 0) or 0
weight = 1.0 if current_raise_time == 0 else 0.01
weights.append(weight)
# 按权重随机选择
chosen_conflict = random.choices(conflicts, weights=weights, k=1)[0]
# 选中后,自增 raise_time 并保存
chosen_conflict.raise_time = (getattr(chosen_conflict, "raise_time", 0) or 0) + 1
chosen_conflict.save()
return chosen_conflict
else:
# 如果没有 raise_time == 0 的冲突,返回 None
return None
async def make_question(self) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""生成一条用于询问用户的冲突问题与上下文。
返回三元组 (question, chat_context, conflict_context)
- question: 冲突文本若本次未选中任何冲突则为 None
- chat_context: 该冲突创建时间点前的会话上下文字符串若无则为 None
- conflict_context: 冲突在 DB 中存储的上下文若无则为 None
"""
conflict = await self.get_random_unanswered_conflict()
if not conflict:
return None, None, None
question = conflict.conflict_content
conflict_context = conflict.context
create_time = conflict.create_time
chat_context = self.get_context(create_time)
return question, chat_context, conflict_context

View File

@ -1,192 +0,0 @@
import time
from src.common.logger import get_logger
from src.common.database.database_model import MemoryConflict
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
from src.memory_system.memory_utils import parse_md_json
logger = get_logger("conflict_tracker")
class ConflictTracker:
"""
记忆整合冲突追踪器
用于记录和存储记忆整合过程中的冲突内容
"""
def __init__(self):
self.LLMRequest_tracker = LLMRequest(
model_set=model_config.model_task_config.utils,
request_type="conflict_tracker",
)
async def record_conflict(self, conflict_content: str, context: str = "", chat_id: str = "") -> bool:
"""
记录冲突内容
Args:
conflict_content: 冲突内容
context: 上下文
chat_id: 聊天ID
Returns:
bool: 是否成功记录
"""
try:
if not conflict_content or conflict_content.strip() == "":
return False
# 直接记录,不进行跟踪
MemoryConflict.create(
conflict_content=conflict_content,
create_time=time.time(),
update_time=time.time(),
answer="",
chat_id=chat_id,
)
logger.info(f"记录冲突内容: {len(conflict_content)} 字符")
return True
except Exception as e:
logger.error(f"记录冲突内容时出错: {e}")
return False
async def add_or_update_conflict(
self,
conflict_content: str,
create_time: float,
update_time: float,
answer: str = "",
context: str = "",
chat_id: str = None
) -> bool:
"""
根据conflict_content匹配数据库内容如果找到相同的就更新update_time和answer
如果没有相同的就新建一条保存全部内容
"""
try:
# 尝试根据conflict_content查找现有记录
existing_conflict = MemoryConflict.get_or_none(
MemoryConflict.conflict_content == conflict_content,
MemoryConflict.chat_id == chat_id
)
if existing_conflict:
# 如果找到相同的conflict_content更新update_time和answer
existing_conflict.update_time = update_time
existing_conflict.answer = answer
existing_conflict.save()
return True
else:
# 如果没有找到相同的,创建新记录
MemoryConflict.create(
conflict_content=conflict_content,
create_time=create_time,
update_time=update_time,
answer=answer,
context=context,
chat_id=chat_id,
)
return True
except Exception as e:
# 记录错误并返回False
logger.error(f"添加或更新冲突记录时出错: {e}")
return False
async def record_memory_merge_conflict(self, part2_content: str, chat_id: str = None) -> bool:
"""
记录记忆整合过程中的冲突内容part2
Args:
part2_content: 冲突内容part2
Returns:
bool: 是否成功记录
"""
if not part2_content or part2_content.strip() == "":
return False
prompt = f"""以下是一段有冲突的信息,请你根据这些信息总结出几个具体的提问:
冲突信息
{part2_content}
要求
1.提问必须具体明确
2.提问最好涉及指向明确的事物而不是代称
3.如果缺少上下文不要强行提问可以忽略
4.请忽略涉及违法暴力色情政治等敏感话题的内容
请用json格式输出不要输出其他内容仅输出提问理由和具体提的提问:
**示例**
// 理由文本
```json
{{
"question":"提问",
}}
```
```json
{{
"question":"提问"
}}
```
...提问数量在1-3个之间不要重复现在请输出"""
question_response, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_tracker.generate_response_async(prompt)
# 解析JSON响应
questions, reasoning_content = parse_md_json(question_response)
print(prompt)
print(question_response)
for question in questions:
await self.record_conflict(
conflict_content=question["question"],
context=reasoning_content,
chat_id=chat_id,
)
return True
async def get_conflict_count(self) -> int:
"""
获取冲突记录数量
Returns:
int: 记录数量
"""
try:
return MemoryConflict.select().count()
except Exception as e:
logger.error(f"获取冲突记录数量时出错: {e}")
return 0
async def delete_conflict(self, conflict_content: str, chat_id: str) -> bool:
"""
删除指定的冲突记录
Args:
conflict_content: 冲突内容
chat_id: 聊天ID
Returns:
bool: 是否成功删除
"""
try:
conflict = MemoryConflict.get_or_none(
MemoryConflict.conflict_content == conflict_content,
MemoryConflict.chat_id == chat_id
)
if conflict:
conflict.delete_instance()
logger.info(f"已删除冲突记录: {conflict_content}")
return True
else:
logger.warning(f"未找到要删除的冲突记录: {conflict_content}")
return False
except Exception as e:
logger.error(f"删除冲突记录时出错: {e}")
return False
# 全局冲突追踪器实例
global_conflict_tracker = ConflictTracker()

View File

@ -11,15 +11,13 @@ logger = get_logger("memory_retrieval_tools")
async def query_jargon(
keyword: str,
chat_id: str,
fuzzy: bool = False
chat_id: str
) -> str:
"""根据关键词在jargon库中查询
Args:
keyword: 关键词黑话/俚语/缩写
chat_id: 聊天ID
fuzzy: 是否使用模糊搜索默认False精确匹配
Returns:
str: 查询结果
@ -29,27 +27,53 @@ async def query_jargon(
if not content:
return "关键词为空"
# 执行搜索(仅搜索当前会话或全局)
# 先尝试精确匹配
results = search_jargon(
keyword=content,
chat_id=chat_id,
limit=1,
limit=10,
case_sensitive=False,
fuzzy=fuzzy
fuzzy=False
)
is_fuzzy_match = False
# 如果精确匹配未找到,尝试模糊搜索
if not results:
results = search_jargon(
keyword=content,
chat_id=chat_id,
limit=10,
case_sensitive=False,
fuzzy=True
)
is_fuzzy_match = True
if results:
result = results[0]
translation = result.get("translation", "").strip()
meaning = result.get("meaning", "").strip()
search_type = "模糊搜索" if fuzzy else "精确匹配"
output = f'"{content}可能为黑话或者网络简写,翻译为:{translation},含义为:{meaning}"'
logger.info(f"在jargon库中找到匹配当前会话或全局{search_type}: {content}")
# 如果是模糊匹配显示找到的实际jargon内容
if is_fuzzy_match:
# 处理多个结果
output_parts = [f"未精确匹配到'{content}'"]
for result in results:
found_content = result.get("content", "").strip()
meaning = result.get("meaning", "").strip()
if found_content and meaning:
output_parts.append(f"找到 '{found_content}' 的含义为:{meaning}")
output = "".join(output_parts)
logger.info(f"在jargon库中找到匹配当前会话或全局模糊搜索: {content},找到{len(results)}条结果")
else:
# 精确匹配可能有多条相同content但不同chat_id的情况
output_parts = []
for result in results:
meaning = result.get("meaning", "").strip()
if meaning:
output_parts.append(f"'{content}' 为黑话或者网络简写,含义为:{meaning}")
output = "".join(output_parts) if len(output_parts) > 1 else output_parts[0]
logger.info(f"在jargon库中找到匹配当前会话或全局精确匹配: {content},找到{len(results)}条结果")
return output
# 未命中
search_type = "模糊搜索" if fuzzy else "精确匹配"
logger.info(f"在jargon库中未找到匹配当前会话或全局{search_type}: {content}")
logger.info(f"在jargon库中未找到匹配当前会话或全局精确匹配和模糊搜索都未找到: {content}")
return f"未在jargon库中找到'{content}'的解释"
except Exception as e:
@ -61,19 +85,13 @@ def register_tool():
"""注册工具"""
register_memory_retrieval_tool(
name="query_jargon",
description="根据关键词在jargon库中查询黑话/俚语/缩写的含义。支持大小写不敏感搜索模糊搜索。仅搜索当前会话或全局jargon。",
description="根据关键词在jargon库中查询黑话/俚语/缩写的含义。支持大小写不敏感搜索,默认会先尝试精确匹配,如果找不到则自动使用模糊搜索。仅搜索当前会话或全局jargon。",
parameters=[
{
"name": "keyword",
"type": "string",
"description": "关键词(黑话/俚语/缩写),支持模糊搜索",
"description": "关键词(黑话/俚语/缩写)",
"required": True
},
{
"name": "fuzzy",
"type": "boolean",
"description": "是否使用模糊搜索部分匹配默认False精确匹配。当精确匹配找不到时可以尝试使用模糊搜索。",
"required": False
}
],
execute_func=query_jargon